Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reueq | Structured version Visualization version GIF version |
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3186 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
2 | moeq 3620 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
3 | mormo 3336 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 |
5 | reu5 3337 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) |
7 | 1, 6 | bitr4i 281 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∃*wmo 2537 ∃wrex 3062 ∃!wreu 3063 ∃*wrmo 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-mo 2539 df-eu 2568 df-cleq 2729 df-clel 2816 df-rex 3067 df-reu 3068 df-rmo 3069 |
This theorem is referenced by: icoshftf1o 13062 addsq2reu 26321 euoreqb 44273 inlinecirc02preu 45807 |
Copyright terms: Public domain | W3C validator |