MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq Structured version   Visualization version   GIF version

Theorem reueq 3694
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem reueq
StepHypRef Expression
1 risset 3205 . 2 (𝐵𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
2 moeq 3664 . . . 4 ∃*𝑥 𝑥 = 𝐵
3 mormo 3349 . . . 4 (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥𝐴 𝑥 = 𝐵)
42, 3ax-mp 5 . . 3 ∃*𝑥𝐴 𝑥 = 𝐵
5 reu5 3346 . . 3 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ (∃𝑥𝐴 𝑥 = 𝐵 ∧ ∃*𝑥𝐴 𝑥 = 𝐵))
64, 5mpbiran2 710 . 2 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
71, 6bitr4i 278 1 (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2110  ∃*wmo 2532  wrex 3054  ∃!wreu 3342  ∃*wrmo 3343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2534  df-eu 2563  df-cleq 2722  df-clel 2804  df-rex 3055  df-rmo 3344  df-reu 3345
This theorem is referenced by:  icoshftf1o  13366  addsq2reu  27371  euoreqb  47119  isuspgrimlem  47905  inlinecirc02preu  48799
  Copyright terms: Public domain W3C validator