MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reueq Structured version   Visualization version   GIF version

Theorem reueq 3691
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
reueq (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem reueq
StepHypRef Expression
1 risset 3207 . 2 (𝐵𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
2 moeq 3661 . . . 4 ∃*𝑥 𝑥 = 𝐵
3 mormo 3351 . . . 4 (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥𝐴 𝑥 = 𝐵)
42, 3ax-mp 5 . . 3 ∃*𝑥𝐴 𝑥 = 𝐵
5 reu5 3348 . . 3 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ (∃𝑥𝐴 𝑥 = 𝐵 ∧ ∃*𝑥𝐴 𝑥 = 𝐵))
64, 5mpbiran2 710 . 2 (∃!𝑥𝐴 𝑥 = 𝐵 ↔ ∃𝑥𝐴 𝑥 = 𝐵)
71, 6bitr4i 278 1 (𝐵𝐴 ↔ ∃!𝑥𝐴 𝑥 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  ∃*wmo 2533  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-eu 2564  df-cleq 2723  df-clel 2806  df-rex 3057  df-rmo 3346  df-reu 3347
This theorem is referenced by:  icoshftf1o  13380  addsq2reu  27384  euoreqb  47214  isuspgrimlem  48000  inlinecirc02preu  48894
  Copyright terms: Public domain W3C validator