![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reueq | Structured version Visualization version GIF version |
Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3231 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
2 | moeq 3716 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
3 | mormo 3383 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 |
5 | reu5 3380 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) |
7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃*wmo 2536 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 df-eu 2567 df-cleq 2727 df-clel 2814 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: icoshftf1o 13511 addsq2reu 27499 euoreqb 47059 isuspgrimlem 47812 inlinecirc02preu 48638 |
Copyright terms: Public domain | W3C validator |