| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reueq | Structured version Visualization version GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| reueq | ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset 3205 | . 2 ⊢ (𝐵 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 2 | moeq 3664 | . . . 4 ⊢ ∃*𝑥 𝑥 = 𝐵 | |
| 3 | mormo 3349 | . . . 4 ⊢ (∃*𝑥 𝑥 = 𝐵 → ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵 |
| 5 | reu5 3346 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃*𝑥 ∈ 𝐴 𝑥 = 𝐵)) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| 7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝐵 ∈ 𝐴 ↔ ∃!𝑥 ∈ 𝐴 𝑥 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2110 ∃*wmo 2532 ∃wrex 3054 ∃!wreu 3342 ∃*wrmo 3343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2534 df-eu 2563 df-cleq 2722 df-clel 2804 df-rex 3055 df-rmo 3344 df-reu 3345 |
| This theorem is referenced by: icoshftf1o 13366 addsq2reu 27371 euoreqb 47119 isuspgrimlem 47905 inlinecirc02preu 48799 |
| Copyright terms: Public domain | W3C validator |