| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfninf | Structured version Visualization version GIF version | ||
| Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| hfninf | ⊢ ¬ ω ∈ Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9510 | . . 3 ⊢ ¬ ω ∈ ω | |
| 2 | elhf2g 36149 | . . . 4 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω)) | |
| 3 | ordom 7816 | . . . . . . 7 ⊢ Ord ω | |
| 4 | elong 6319 | . . . . . . 7 ⊢ (ω ∈ Hf → (ω ∈ On ↔ Ord ω)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . 6 ⊢ (ω ∈ Hf → ω ∈ On) |
| 6 | r111 9690 | . . . . . . . . 9 ⊢ 𝑅1:On–1-1→V | |
| 7 | f1dm 6728 | . . . . . . . . 9 ⊢ (𝑅1:On–1-1→V → dom 𝑅1 = On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ dom 𝑅1 = On |
| 9 | 8 | eleq2i 2820 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ ω ∈ On) |
| 10 | rankonid 9744 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω) | |
| 11 | 9, 10 | bitr3i 277 | . . . . . 6 ⊢ (ω ∈ On ↔ (rank‘ω) = ω) |
| 12 | 5, 11 | sylib 218 | . . . . 5 ⊢ (ω ∈ Hf → (rank‘ω) = ω) |
| 13 | 12 | eleq1d 2813 | . . . 4 ⊢ (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω)) |
| 14 | 2, 13 | bitrd 279 | . . 3 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω)) |
| 15 | 1, 14 | mtbiri 327 | . 2 ⊢ (ω ∈ Hf → ¬ ω ∈ Hf ) |
| 16 | pm2.01 188 | . 2 ⊢ ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf ) | |
| 17 | 15, 16 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Hf |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 dom cdm 5623 Ord word 6310 Oncon0 6311 –1-1→wf1 6483 ‘cfv 6486 ωcom 7806 𝑅1cr1 9677 rankcrnk 9678 Hf chf 36145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-r1 9679 df-rank 9680 df-hf 36146 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |