Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfninf Structured version   Visualization version   GIF version

Theorem hfninf 36181
Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfninf ¬ ω ∈ Hf

Proof of Theorem hfninf
StepHypRef Expression
1 elirr 9557 . . 3 ¬ ω ∈ ω
2 elhf2g 36171 . . . 4 (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω))
3 ordom 7855 . . . . . . 7 Ord ω
4 elong 6343 . . . . . . 7 (ω ∈ Hf → (ω ∈ On ↔ Ord ω))
53, 4mpbiri 258 . . . . . 6 (ω ∈ Hf → ω ∈ On)
6 r111 9735 . . . . . . . . 9 𝑅1:On–1-1→V
7 f1dm 6763 . . . . . . . . 9 (𝑅1:On–1-1→V → dom 𝑅1 = On)
86, 7ax-mp 5 . . . . . . . 8 dom 𝑅1 = On
98eleq2i 2821 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ ω ∈ On)
10 rankonid 9789 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω)
119, 10bitr3i 277 . . . . . 6 (ω ∈ On ↔ (rank‘ω) = ω)
125, 11sylib 218 . . . . 5 (ω ∈ Hf → (rank‘ω) = ω)
1312eleq1d 2814 . . . 4 (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω))
142, 13bitrd 279 . . 3 (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω))
151, 14mtbiri 327 . 2 (ω ∈ Hf → ¬ ω ∈ Hf )
16 pm2.01 188 . 2 ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf )
1715, 16ax-mp 5 1 ¬ ω ∈ Hf
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  dom cdm 5641  Ord word 6334  Oncon0 6335  1-1wf1 6511  cfv 6514  ωcom 7845  𝑅1cr1 9722  rankcrnk 9723   Hf chf 36167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-r1 9724  df-rank 9725  df-hf 36168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator