Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfninf Structured version   Visualization version   GIF version

Theorem hfninf 36150
Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfninf ¬ ω ∈ Hf

Proof of Theorem hfninf
StepHypRef Expression
1 elirr 9666 . . 3 ¬ ω ∈ ω
2 elhf2g 36140 . . . 4 (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω))
3 ordom 7913 . . . . . . 7 Ord ω
4 elong 6403 . . . . . . 7 (ω ∈ Hf → (ω ∈ On ↔ Ord ω))
53, 4mpbiri 258 . . . . . 6 (ω ∈ Hf → ω ∈ On)
6 r111 9844 . . . . . . . . 9 𝑅1:On–1-1→V
7 f1dm 6821 . . . . . . . . 9 (𝑅1:On–1-1→V → dom 𝑅1 = On)
86, 7ax-mp 5 . . . . . . . 8 dom 𝑅1 = On
98eleq2i 2836 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ ω ∈ On)
10 rankonid 9898 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω)
119, 10bitr3i 277 . . . . . 6 (ω ∈ On ↔ (rank‘ω) = ω)
125, 11sylib 218 . . . . 5 (ω ∈ Hf → (rank‘ω) = ω)
1312eleq1d 2829 . . . 4 (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω))
142, 13bitrd 279 . . 3 (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω))
151, 14mtbiri 327 . 2 (ω ∈ Hf → ¬ ω ∈ Hf )
16 pm2.01 188 . 2 ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf )
1715, 16ax-mp 5 1 ¬ ω ∈ Hf
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  dom cdm 5700  Ord word 6394  Oncon0 6395  1-1wf1 6570  cfv 6573  ωcom 7903  𝑅1cr1 9831  rankcrnk 9832   Hf chf 36136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-r1 9833  df-rank 9834  df-hf 36137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator