Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfninf Structured version   Visualization version   GIF version

Theorem hfninf 36174
Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfninf ¬ ω ∈ Hf

Proof of Theorem hfninf
StepHypRef Expression
1 elirr 9550 . . 3 ¬ ω ∈ ω
2 elhf2g 36164 . . . 4 (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω))
3 ordom 7852 . . . . . . 7 Ord ω
4 elong 6340 . . . . . . 7 (ω ∈ Hf → (ω ∈ On ↔ Ord ω))
53, 4mpbiri 258 . . . . . 6 (ω ∈ Hf → ω ∈ On)
6 r111 9728 . . . . . . . . 9 𝑅1:On–1-1→V
7 f1dm 6760 . . . . . . . . 9 (𝑅1:On–1-1→V → dom 𝑅1 = On)
86, 7ax-mp 5 . . . . . . . 8 dom 𝑅1 = On
98eleq2i 2820 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ ω ∈ On)
10 rankonid 9782 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω)
119, 10bitr3i 277 . . . . . 6 (ω ∈ On ↔ (rank‘ω) = ω)
125, 11sylib 218 . . . . 5 (ω ∈ Hf → (rank‘ω) = ω)
1312eleq1d 2813 . . . 4 (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω))
142, 13bitrd 279 . . 3 (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω))
151, 14mtbiri 327 . 2 (ω ∈ Hf → ¬ ω ∈ Hf )
16 pm2.01 188 . 2 ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf )
1715, 16ax-mp 5 1 ¬ ω ∈ Hf
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  dom cdm 5638  Ord word 6331  Oncon0 6332  1-1wf1 6508  cfv 6511  ωcom 7842  𝑅1cr1 9715  rankcrnk 9716   Hf chf 36160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-r1 9717  df-rank 9718  df-hf 36161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator