| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfninf | Structured version Visualization version GIF version | ||
| Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| hfninf | ⊢ ¬ ω ∈ Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9611 | . . 3 ⊢ ¬ ω ∈ ω | |
| 2 | elhf2g 36194 | . . . 4 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω)) | |
| 3 | ordom 7871 | . . . . . . 7 ⊢ Ord ω | |
| 4 | elong 6360 | . . . . . . 7 ⊢ (ω ∈ Hf → (ω ∈ On ↔ Ord ω)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . 6 ⊢ (ω ∈ Hf → ω ∈ On) |
| 6 | r111 9789 | . . . . . . . . 9 ⊢ 𝑅1:On–1-1→V | |
| 7 | f1dm 6778 | . . . . . . . . 9 ⊢ (𝑅1:On–1-1→V → dom 𝑅1 = On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ dom 𝑅1 = On |
| 9 | 8 | eleq2i 2826 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ ω ∈ On) |
| 10 | rankonid 9843 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω) | |
| 11 | 9, 10 | bitr3i 277 | . . . . . 6 ⊢ (ω ∈ On ↔ (rank‘ω) = ω) |
| 12 | 5, 11 | sylib 218 | . . . . 5 ⊢ (ω ∈ Hf → (rank‘ω) = ω) |
| 13 | 12 | eleq1d 2819 | . . . 4 ⊢ (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω)) |
| 14 | 2, 13 | bitrd 279 | . . 3 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω)) |
| 15 | 1, 14 | mtbiri 327 | . 2 ⊢ (ω ∈ Hf → ¬ ω ∈ Hf ) |
| 16 | pm2.01 188 | . 2 ⊢ ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf ) | |
| 17 | 15, 16 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Hf |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 dom cdm 5654 Ord word 6351 Oncon0 6352 –1-1→wf1 6528 ‘cfv 6531 ωcom 7861 𝑅1cr1 9776 rankcrnk 9777 Hf chf 36190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-r1 9778 df-rank 9779 df-hf 36191 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |