![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfninf | Structured version Visualization version GIF version |
Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfninf | ⊢ ¬ ω ∈ Hf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9541 | . . 3 ⊢ ¬ ω ∈ ω | |
2 | elhf2g 34814 | . . . 4 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω)) | |
3 | ordom 7816 | . . . . . . 7 ⊢ Ord ω | |
4 | elong 6329 | . . . . . . 7 ⊢ (ω ∈ Hf → (ω ∈ On ↔ Ord ω)) | |
5 | 3, 4 | mpbiri 258 | . . . . . 6 ⊢ (ω ∈ Hf → ω ∈ On) |
6 | r111 9719 | . . . . . . . . 9 ⊢ 𝑅1:On–1-1→V | |
7 | f1dm 6746 | . . . . . . . . 9 ⊢ (𝑅1:On–1-1→V → dom 𝑅1 = On) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ dom 𝑅1 = On |
9 | 8 | eleq2i 2826 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ ω ∈ On) |
10 | rankonid 9773 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω) | |
11 | 9, 10 | bitr3i 277 | . . . . . 6 ⊢ (ω ∈ On ↔ (rank‘ω) = ω) |
12 | 5, 11 | sylib 217 | . . . . 5 ⊢ (ω ∈ Hf → (rank‘ω) = ω) |
13 | 12 | eleq1d 2819 | . . . 4 ⊢ (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω)) |
14 | 2, 13 | bitrd 279 | . . 3 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω)) |
15 | 1, 14 | mtbiri 327 | . 2 ⊢ (ω ∈ Hf → ¬ ω ∈ Hf ) |
16 | pm2.01 188 | . 2 ⊢ ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf ) | |
17 | 15, 16 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Hf |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3447 dom cdm 5637 Ord word 6320 Oncon0 6321 –1-1→wf1 6497 ‘cfv 6500 ωcom 7806 𝑅1cr1 9706 rankcrnk 9707 Hf chf 34810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-reg 9536 ax-inf2 9585 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-r1 9708 df-rank 9709 df-hf 34811 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |