Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfninf Structured version   Visualization version   GIF version

Theorem hfninf 36159
Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfninf ¬ ω ∈ Hf

Proof of Theorem hfninf
StepHypRef Expression
1 elirr 9510 . . 3 ¬ ω ∈ ω
2 elhf2g 36149 . . . 4 (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω))
3 ordom 7816 . . . . . . 7 Ord ω
4 elong 6319 . . . . . . 7 (ω ∈ Hf → (ω ∈ On ↔ Ord ω))
53, 4mpbiri 258 . . . . . 6 (ω ∈ Hf → ω ∈ On)
6 r111 9690 . . . . . . . . 9 𝑅1:On–1-1→V
7 f1dm 6728 . . . . . . . . 9 (𝑅1:On–1-1→V → dom 𝑅1 = On)
86, 7ax-mp 5 . . . . . . . 8 dom 𝑅1 = On
98eleq2i 2820 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ ω ∈ On)
10 rankonid 9744 . . . . . . 7 (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω)
119, 10bitr3i 277 . . . . . 6 (ω ∈ On ↔ (rank‘ω) = ω)
125, 11sylib 218 . . . . 5 (ω ∈ Hf → (rank‘ω) = ω)
1312eleq1d 2813 . . . 4 (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω))
142, 13bitrd 279 . . 3 (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω))
151, 14mtbiri 327 . 2 (ω ∈ Hf → ¬ ω ∈ Hf )
16 pm2.01 188 . 2 ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf )
1715, 16ax-mp 5 1 ¬ ω ∈ Hf
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  dom cdm 5623  Ord word 6310  Oncon0 6311  1-1wf1 6483  cfv 6486  ωcom 7806  𝑅1cr1 9677  rankcrnk 9678   Hf chf 36145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-r1 9679  df-rank 9680  df-hf 36146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator