![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfninf | Structured version Visualization version GIF version |
Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfninf | ⊢ ¬ ω ∈ Hf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9635 | . . 3 ⊢ ¬ ω ∈ ω | |
2 | elhf2g 36158 | . . . 4 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω)) | |
3 | ordom 7897 | . . . . . . 7 ⊢ Ord ω | |
4 | elong 6394 | . . . . . . 7 ⊢ (ω ∈ Hf → (ω ∈ On ↔ Ord ω)) | |
5 | 3, 4 | mpbiri 258 | . . . . . 6 ⊢ (ω ∈ Hf → ω ∈ On) |
6 | r111 9813 | . . . . . . . . 9 ⊢ 𝑅1:On–1-1→V | |
7 | f1dm 6809 | . . . . . . . . 9 ⊢ (𝑅1:On–1-1→V → dom 𝑅1 = On) | |
8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ dom 𝑅1 = On |
9 | 8 | eleq2i 2831 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ ω ∈ On) |
10 | rankonid 9867 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω) | |
11 | 9, 10 | bitr3i 277 | . . . . . 6 ⊢ (ω ∈ On ↔ (rank‘ω) = ω) |
12 | 5, 11 | sylib 218 | . . . . 5 ⊢ (ω ∈ Hf → (rank‘ω) = ω) |
13 | 12 | eleq1d 2824 | . . . 4 ⊢ (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω)) |
14 | 2, 13 | bitrd 279 | . . 3 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω)) |
15 | 1, 14 | mtbiri 327 | . 2 ⊢ (ω ∈ Hf → ¬ ω ∈ Hf ) |
16 | pm2.01 188 | . 2 ⊢ ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf ) | |
17 | 15, 16 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Hf |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 dom cdm 5689 Ord word 6385 Oncon0 6386 –1-1→wf1 6560 ‘cfv 6563 ωcom 7887 𝑅1cr1 9800 rankcrnk 9801 Hf chf 36154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-r1 9802 df-rank 9803 df-hf 36155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |