| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfninf | Structured version Visualization version GIF version | ||
| Description: ω is not hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| hfninf | ⊢ ¬ ω ∈ Hf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 9480 | . . 3 ⊢ ¬ ω ∈ ω | |
| 2 | elhf2g 36210 | . . . 4 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ (rank‘ω) ∈ ω)) | |
| 3 | ordom 7801 | . . . . . . 7 ⊢ Ord ω | |
| 4 | elong 6309 | . . . . . . 7 ⊢ (ω ∈ Hf → (ω ∈ On ↔ Ord ω)) | |
| 5 | 3, 4 | mpbiri 258 | . . . . . 6 ⊢ (ω ∈ Hf → ω ∈ On) |
| 6 | r111 9663 | . . . . . . . . 9 ⊢ 𝑅1:On–1-1→V | |
| 7 | f1dm 6718 | . . . . . . . . 9 ⊢ (𝑅1:On–1-1→V → dom 𝑅1 = On) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ dom 𝑅1 = On |
| 9 | 8 | eleq2i 2823 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ ω ∈ On) |
| 10 | rankonid 9717 | . . . . . . 7 ⊢ (ω ∈ dom 𝑅1 ↔ (rank‘ω) = ω) | |
| 11 | 9, 10 | bitr3i 277 | . . . . . 6 ⊢ (ω ∈ On ↔ (rank‘ω) = ω) |
| 12 | 5, 11 | sylib 218 | . . . . 5 ⊢ (ω ∈ Hf → (rank‘ω) = ω) |
| 13 | 12 | eleq1d 2816 | . . . 4 ⊢ (ω ∈ Hf → ((rank‘ω) ∈ ω ↔ ω ∈ ω)) |
| 14 | 2, 13 | bitrd 279 | . . 3 ⊢ (ω ∈ Hf → (ω ∈ Hf ↔ ω ∈ ω)) |
| 15 | 1, 14 | mtbiri 327 | . 2 ⊢ (ω ∈ Hf → ¬ ω ∈ Hf ) |
| 16 | pm2.01 188 | . 2 ⊢ ((ω ∈ Hf → ¬ ω ∈ Hf ) → ¬ ω ∈ Hf ) | |
| 17 | 15, 16 | ax-mp 5 | 1 ⊢ ¬ ω ∈ Hf |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 dom cdm 5611 Ord word 6300 Oncon0 6301 –1-1→wf1 6473 ‘cfv 6476 ωcom 7791 𝑅1cr1 9650 rankcrnk 9651 Hf chf 36206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-reg 9473 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-r1 9652 df-rank 9653 df-hf 36207 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |