MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoimi Structured version   Visualization version   GIF version

Theorem rmoimi 3701
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi.1 (𝜑𝜓)
Assertion
Ref Expression
rmoimi (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoimi
StepHypRef Expression
1 rmoimi.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32rmoimia 3700 1 (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-ral 3048  df-rmo 3346
This theorem is referenced by:  2rexreu  3721  2sqreunnlem1  27385  disjin  32561  disjin2  32562  addinvcom  42464
  Copyright terms: Public domain W3C validator