| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoimi | Structured version Visualization version GIF version | ||
| Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmoimi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| rmoimi | ⊢ (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | rmoimia 3700 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 → ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-ral 3048 df-rmo 3346 |
| This theorem is referenced by: 2rexreu 3721 2sqreunnlem1 27385 disjin 32561 disjin2 32562 addinvcom 42464 |
| Copyright terms: Public domain | W3C validator |