MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoimi Structured version   Visualization version   GIF version

Theorem rmoimi 3672
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi.1 (𝜑𝜓)
Assertion
Ref Expression
rmoimi (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑)

Proof of Theorem rmoimi
StepHypRef Expression
1 rmoimi.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32rmoimia 3671 1 (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-mo 2540  df-ral 3068  df-rmo 3071
This theorem is referenced by:  2rexreu  3692  2sqreunnlem1  26502  disjin  30826  disjin2  30827  addinvcom  40334
  Copyright terms: Public domain W3C validator