Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addinvcom Structured version   Visualization version   GIF version

Theorem addinvcom 42464
Description: A number commutes with its additive inverse. Compare remulinvcom 42465. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
addinvcom.a (𝜑𝐴 ∈ ℂ)
addinvcom.b (𝜑𝐵 ∈ ℂ)
addinvcom.1 (𝜑 → (𝐴 + 𝐵) = 0)
Assertion
Ref Expression
addinvcom (𝜑 → (𝐵 + 𝐴) = 0)

Proof of Theorem addinvcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3958 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
2 simpl 482 . . . . . . 7 (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
32rgenw 3051 . . . . . 6 𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
43a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0))
5 addinvcom.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
6 sn-negex12 42449 . . . . . 6 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
75, 6syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
8 0cn 11101 . . . . . 6 0 ∈ ℂ
9 sn-subeu 42459 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
105, 8, 9sylancl 586 . . . . 5 (𝜑 → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
11 riotass2 7333 . . . . 5 (((ℂ ⊆ ℂ ∧ ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)) ∧ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)) → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
121, 4, 7, 10, 11syl22anc 838 . . . 4 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
13 addinvcom.1 . . . . 5 (𝜑 → (𝐴 + 𝐵) = 0)
14 addinvcom.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
15 oveq2 7354 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1615eqeq1d 2733 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0))
1716riota2 7328 . . . . . 6 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1814, 10, 17syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1913, 18mpbid 232 . . . 4 (𝜑 → (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵)
2012, 19eqtrd 2766 . . 3 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵)
21 reurmo 3349 . . . . . 6 (∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
222rmoimi 3701 . . . . . 6 (∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
2310, 21, 223syl 18 . . . . 5 (𝜑 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
24 reu5 3348 . . . . 5 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)))
257, 23, 24sylanbrc 583 . . . 4 (𝜑 → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
26 oveq1 7353 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 + 𝐴) = (𝐵 + 𝐴))
2726eqeq1d 2733 . . . . . 6 (𝑥 = 𝐵 → ((𝑥 + 𝐴) = 0 ↔ (𝐵 + 𝐴) = 0))
2816, 27anbi12d 632 . . . . 5 (𝑥 = 𝐵 → (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0)))
2928riota2 7328 . . . 4 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3014, 25, 29syl2anc 584 . . 3 (𝜑 → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3120, 30mpbird 257 . 2 (𝜑 → ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0))
3231simprd 495 1 (𝜑 → (𝐵 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345  wss 3902  crio 7302  (class class class)co 7346  cc 11001  0cc0 11003   + caddc 11006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-2 12185  df-3 12186  df-resub 42398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator