Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addinvcom Structured version   Visualization version   GIF version

Theorem addinvcom 42405
Description: A number commutes with its additive inverse. Compare remulinvcom 42406. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
addinvcom.a (𝜑𝐴 ∈ ℂ)
addinvcom.b (𝜑𝐵 ∈ ℂ)
addinvcom.1 (𝜑 → (𝐴 + 𝐵) = 0)
Assertion
Ref Expression
addinvcom (𝜑 → (𝐵 + 𝐴) = 0)

Proof of Theorem addinvcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3961 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
2 simpl 482 . . . . . . 7 (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
32rgenw 3048 . . . . . 6 𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
43a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0))
5 addinvcom.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
6 sn-negex12 42390 . . . . . 6 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
75, 6syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
8 0cn 11126 . . . . . 6 0 ∈ ℂ
9 sn-subeu 42400 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
105, 8, 9sylancl 586 . . . . 5 (𝜑 → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
11 riotass2 7340 . . . . 5 (((ℂ ⊆ ℂ ∧ ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)) ∧ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)) → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
121, 4, 7, 10, 11syl22anc 838 . . . 4 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
13 addinvcom.1 . . . . 5 (𝜑 → (𝐴 + 𝐵) = 0)
14 addinvcom.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
15 oveq2 7361 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1615eqeq1d 2731 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0))
1716riota2 7335 . . . . . 6 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1814, 10, 17syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1913, 18mpbid 232 . . . 4 (𝜑 → (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵)
2012, 19eqtrd 2764 . . 3 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵)
21 reurmo 3348 . . . . . 6 (∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
222rmoimi 3704 . . . . . 6 (∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
2310, 21, 223syl 18 . . . . 5 (𝜑 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
24 reu5 3347 . . . . 5 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)))
257, 23, 24sylanbrc 583 . . . 4 (𝜑 → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
26 oveq1 7360 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 + 𝐴) = (𝐵 + 𝐴))
2726eqeq1d 2731 . . . . . 6 (𝑥 = 𝐵 → ((𝑥 + 𝐴) = 0 ↔ (𝐵 + 𝐴) = 0))
2816, 27anbi12d 632 . . . . 5 (𝑥 = 𝐵 → (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0)))
2928riota2 7335 . . . 4 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3014, 25, 29syl2anc 584 . . 3 (𝜑 → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3120, 30mpbird 257 . 2 (𝜑 → ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0))
3231simprd 495 1 (𝜑 → (𝐵 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3343  ∃*wrmo 3344  wss 3905  crio 7309  (class class class)co 7353  cc 11026  0cc0 11028   + caddc 11031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-2 12209  df-3 12210  df-resub 42339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator