Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addinvcom Structured version   Visualization version   GIF version

Theorem addinvcom 39895
Description: A number commutes with its additive inverse. Compare remulinvcom 39896. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
addinvcom.a (𝜑𝐴 ∈ ℂ)
addinvcom.b (𝜑𝐵 ∈ ℂ)
addinvcom.1 (𝜑 → (𝐴 + 𝐵) = 0)
Assertion
Ref Expression
addinvcom (𝜑 → (𝐵 + 𝐴) = 0)

Proof of Theorem addinvcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3911 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
2 simpl 487 . . . . . . 7 (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
32rgenw 3080 . . . . . 6 𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
43a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0))
5 addinvcom.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
6 sn-negex12 39880 . . . . . 6 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
75, 6syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
8 0cn 10656 . . . . . 6 0 ∈ ℂ
9 sn-subeu 39890 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
105, 8, 9sylancl 590 . . . . 5 (𝜑 → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
11 riotass2 7131 . . . . 5 (((ℂ ⊆ ℂ ∧ ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)) ∧ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)) → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
121, 4, 7, 10, 11syl22anc 838 . . . 4 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
13 addinvcom.1 . . . . 5 (𝜑 → (𝐴 + 𝐵) = 0)
14 addinvcom.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
15 oveq2 7151 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1615eqeq1d 2761 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0))
1716riota2 7126 . . . . . 6 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1814, 10, 17syl2anc 588 . . . . 5 (𝜑 → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1913, 18mpbid 235 . . . 4 (𝜑 → (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵)
2012, 19eqtrd 2794 . . 3 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵)
21 reurmo 3341 . . . . . 6 (∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
222rmoimi 3653 . . . . . 6 (∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
2310, 21, 223syl 18 . . . . 5 (𝜑 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
24 reu5 3338 . . . . 5 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)))
257, 23, 24sylanbrc 587 . . . 4 (𝜑 → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
26 oveq1 7150 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 + 𝐴) = (𝐵 + 𝐴))
2726eqeq1d 2761 . . . . . 6 (𝑥 = 𝐵 → ((𝑥 + 𝐴) = 0 ↔ (𝐵 + 𝐴) = 0))
2816, 27anbi12d 634 . . . . 5 (𝑥 = 𝐵 → (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0)))
2928riota2 7126 . . . 4 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3014, 25, 29syl2anc 588 . . 3 (𝜑 → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3120, 30mpbird 260 . 2 (𝜑 → ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0))
3231simprd 500 1 (𝜑 → (𝐵 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3068  wrex 3069  ∃!wreu 3070  ∃*wrmo 3071  wss 3854  crio 7100  (class class class)co 7143  cc 10558  0cc0 10560   + caddc 10563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-po 5436  df-so 5437  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-ltxr 10703  df-2 11722  df-3 11723  df-resub 39831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator