Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addinvcom Structured version   Visualization version   GIF version

Theorem addinvcom 40413
Description: A number commutes with its additive inverse. Compare remulinvcom 40414. (Contributed by SN, 5-May-2024.)
Hypotheses
Ref Expression
addinvcom.a (𝜑𝐴 ∈ ℂ)
addinvcom.b (𝜑𝐵 ∈ ℂ)
addinvcom.1 (𝜑 → (𝐴 + 𝐵) = 0)
Assertion
Ref Expression
addinvcom (𝜑 → (𝐵 + 𝐴) = 0)

Proof of Theorem addinvcom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3944 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
2 simpl 483 . . . . . . 7 (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
32rgenw 3076 . . . . . 6 𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)
43a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0))
5 addinvcom.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
6 sn-negex12 40398 . . . . . 6 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
75, 6syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
8 0cn 10967 . . . . . 6 0 ∈ ℂ
9 sn-subeu 40408 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
105, 8, 9sylancl 586 . . . . 5 (𝜑 → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
11 riotass2 7263 . . . . 5 (((ℂ ⊆ ℂ ∧ ∀𝑥 ∈ ℂ (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) → (𝐴 + 𝑥) = 0)) ∧ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)) → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
121, 4, 7, 10, 11syl22anc 836 . . . 4 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0))
13 addinvcom.1 . . . . 5 (𝜑 → (𝐴 + 𝐵) = 0)
14 addinvcom.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
15 oveq2 7283 . . . . . . . 8 (𝑥 = 𝐵 → (𝐴 + 𝑥) = (𝐴 + 𝐵))
1615eqeq1d 2740 . . . . . . 7 (𝑥 = 𝐵 → ((𝐴 + 𝑥) = 0 ↔ (𝐴 + 𝐵) = 0))
1716riota2 7258 . . . . . 6 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1814, 10, 17syl2anc 584 . . . . 5 (𝜑 → ((𝐴 + 𝐵) = 0 ↔ (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵))
1913, 18mpbid 231 . . . 4 (𝜑 → (𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) = 𝐵)
2012, 19eqtrd 2778 . . 3 (𝜑 → (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵)
21 reurmo 3364 . . . . . 6 (∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
222rmoimi 3677 . . . . . 6 (∃*𝑥 ∈ ℂ (𝐴 + 𝑥) = 0 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
2310, 21, 223syl 18 . . . . 5 (𝜑 → ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
24 reu5 3361 . . . . 5 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ∧ ∃*𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)))
257, 23, 24sylanbrc 583 . . . 4 (𝜑 → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0))
26 oveq1 7282 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 + 𝐴) = (𝐵 + 𝐴))
2726eqeq1d 2740 . . . . . 6 (𝑥 = 𝐵 → ((𝑥 + 𝐴) = 0 ↔ (𝐵 + 𝐴) = 0))
2816, 27anbi12d 631 . . . . 5 (𝑥 = 𝐵 → (((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0) ↔ ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0)))
2928riota2 7258 . . . 4 ((𝐵 ∈ ℂ ∧ ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3014, 25, 29syl2anc 584 . . 3 (𝜑 → (((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0) ↔ (𝑥 ∈ ℂ ((𝐴 + 𝑥) = 0 ∧ (𝑥 + 𝐴) = 0)) = 𝐵))
3120, 30mpbird 256 . 2 (𝜑 → ((𝐴 + 𝐵) = 0 ∧ (𝐵 + 𝐴) = 0))
3231simprd 496 1 (𝜑 → (𝐵 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  ∃*wrmo 3067  wss 3887  crio 7231  (class class class)co 7275  cc 10869  0cc0 10871   + caddc 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-2 12036  df-3 12037  df-resub 40349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator