![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjin2 | Structured version Visualization version GIF version |
Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
disjin2 | ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4194 | . . . 4 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐶) → 𝑦 ∈ 𝐶) | |
2 | 1 | rmoimi 3734 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∩ 𝐶)) |
3 | 2 | alimi 1805 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∩ 𝐶)) |
4 | df-disj 5115 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
5 | df-disj 5115 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶) ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∩ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 ∈ wcel 2098 ∃*wrmo 3362 ∩ cin 3943 Disj wdisj 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-mo 2528 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rmo 3363 df-v 3463 df-in 3951 df-disj 5115 |
This theorem is referenced by: ldgenpisyslem1 33913 |
Copyright terms: Public domain | W3C validator |