Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjin2 | Structured version Visualization version GIF version |
Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
Ref | Expression |
---|---|
disjin2 | ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4130 | . . . 4 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐶) → 𝑦 ∈ 𝐶) | |
2 | 1 | rmoimi 3677 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∩ 𝐶)) |
3 | 2 | alimi 1814 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∩ 𝐶)) |
4 | df-disj 5040 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
5 | df-disj 5040 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶) ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐴 ∩ 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐴 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2106 ∃*wrmo 3067 ∩ cin 3886 Disj wdisj 5039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rmo 3071 df-v 3434 df-in 3894 df-disj 5040 |
This theorem is referenced by: ldgenpisyslem1 32131 |
Copyright terms: Public domain | W3C validator |