![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjin | Structured version Visualization version GIF version |
Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
disjin | ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4195 | . . . 4 ⊢ (𝑦 ∈ (𝐶 ∩ 𝐴) → 𝑦 ∈ 𝐶) | |
2 | 1 | rmoimi 3737 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐶 ∩ 𝐴)) |
3 | 2 | alimi 1806 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐶 ∩ 𝐴)) |
4 | df-disj 5114 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
5 | df-disj 5114 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴) ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐶 ∩ 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 ∈ wcel 2099 ∃*wrmo 3372 ∩ cin 3946 Disj wdisj 5113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rmo 3373 df-v 3473 df-in 3954 df-disj 5114 |
This theorem is referenced by: measinblem 33839 carsgclctunlem2 33939 |
Copyright terms: Public domain | W3C validator |