Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjin | Structured version Visualization version GIF version |
Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
disjin | ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4125 | . . . 4 ⊢ (𝑦 ∈ (𝐶 ∩ 𝐴) → 𝑦 ∈ 𝐶) | |
2 | 1 | rmoimi 3672 | . . 3 ⊢ (∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐶 ∩ 𝐴)) |
3 | 2 | alimi 1815 | . 2 ⊢ (∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐶 ∩ 𝐴)) |
4 | df-disj 5036 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
5 | df-disj 5036 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴) ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ (𝐶 ∩ 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐵 (𝐶 ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 ∃*wrmo 3066 ∩ cin 3882 Disj wdisj 5035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rmo 3071 df-v 3424 df-in 3890 df-disj 5036 |
This theorem is referenced by: measinblem 32088 carsgclctunlem2 32186 |
Copyright terms: Public domain | W3C validator |