![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2rexreu | Structured version Visualization version GIF version |
Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu 2703. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
Ref | Expression |
---|---|
2rexreu | ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurmo 3342 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
2 | reurex 3341 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ 𝐵 𝜑) | |
3 | 2 | rmoimi 41941 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
5 | 2reurex 41946 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
6 | 4, 5 | anim12ci 608 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) |
7 | reu5 3340 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) | |
8 | 6, 7 | sylibr 226 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∃wrex 3088 ∃!wreu 3089 ∃*wrmo 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 |
This theorem is referenced by: 2reu1 41951 2reu2 41952 2reu3 41953 |
Copyright terms: Public domain | W3C validator |