Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2rexreu | Structured version Visualization version GIF version |
Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu 2648. (Contributed by Alexander van der Vekens, 25-Jun-2017.) |
Ref | Expression |
---|---|
2rexreu | ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurmo 3364 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
2 | reurex 3362 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ 𝐵 𝜑) | |
3 | 2 | rmoimi 3677 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
5 | 2reurex 3695 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
6 | 4, 5 | anim12ci 614 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) |
7 | reu5 3361 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) | |
8 | 6, 7 | sylibr 233 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wrex 3065 ∃!wreu 3066 ∃*wrmo 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 |
This theorem is referenced by: 2reu1 3830 2reu2 3831 opreu2reu 6198 2reu2reu2 30831 2reu3 44602 |
Copyright terms: Public domain | W3C validator |