|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2rexreu | Structured version Visualization version GIF version | ||
| Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu 2646. (Contributed by Alexander van der Vekens, 25-Jun-2017.) | 
| Ref | Expression | 
|---|---|
| 2rexreu | ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reurmo 3383 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 2 | reurex 3384 | . . . . 5 ⊢ (∃!𝑦 ∈ 𝐵 𝜑 → ∃𝑦 ∈ 𝐵 𝜑) | |
| 3 | 2 | rmoimi 3748 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | 
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | 
| 5 | 2reurex 3766 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
| 6 | 4, 5 | anim12ci 614 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) | 
| 7 | reu5 3382 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ (∃𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ∧ ∃*𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) | |
| 8 | 6, 7 | sylibr 234 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wrex 3070 ∃!wreu 3378 ∃*wrmo 3379 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 | 
| This theorem is referenced by: 2reu1 3897 2reu2 3898 opreu2reu 6315 2reu2reu2 32502 2reu3 47122 | 
| Copyright terms: Public domain | W3C validator |