MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rexreu Structured version   Visualization version   GIF version

Theorem 2rexreu 3692
Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu 2648. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Assertion
Ref Expression
2rexreu ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2rexreu
StepHypRef Expression
1 reurmo 3354 . . . 4 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴𝑦𝐵 𝜑)
2 reurex 3352 . . . . 5 (∃!𝑦𝐵 𝜑 → ∃𝑦𝐵 𝜑)
32rmoimi 3672 . . . 4 (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
41, 3syl 17 . . 3 (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑)
5 2reurex 3690 . . 3 (∃!𝑦𝐵𝑥𝐴 𝜑 → ∃𝑥𝐴 ∃!𝑦𝐵 𝜑)
64, 5anim12ci 613 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → (∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
7 reu5 3351 . 2 (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃𝑥𝐴 ∃!𝑦𝐵 𝜑 ∧ ∃*𝑥𝐴 ∃!𝑦𝐵 𝜑))
86, 7sylibr 233 1 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071
This theorem is referenced by:  2reu1  3826  2reu2  3827  opreu2reu  6187  2reu2reu2  30732  2reu3  44489
  Copyright terms: Public domain W3C validator