Step | Hyp | Ref
| Expression |
1 | | 2sqnn 26492 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
2 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑥 ∈ ℕ) |
3 | 2 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℕ) |
4 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ≤ 𝑏 ↔ 𝑥 ≤ 𝑏)) |
5 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2)) |
6 | 5 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2))) |
7 | 6 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = 𝑃)) |
8 | 4, 7 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))) |
9 | 8 | reubidv 3315 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))) |
10 | 9 | adantl 481 |
. . . . . . . 8
⊢ (((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑥) → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))) |
11 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℕ) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ ℕ) |
13 | | breq2 5074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑦 → (𝑥 ≤ 𝑏 ↔ 𝑥 ≤ 𝑦)) |
14 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2)) |
15 | 14 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) |
16 | 15 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑦 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
17 | 13, 16 | anbi12d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑦 → ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
18 | | equequ1 2029 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑦 → (𝑏 = 𝑐 ↔ 𝑦 = 𝑐)) |
19 | 18 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑦 → (((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))) |
20 | 19 | ralbidv 3120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑦 → (∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))) |
21 | 17, 20 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑦 → (((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))) |
22 | 21 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑏 = 𝑦) → (((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))) |
23 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) |
24 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) |
25 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℝ) |
26 | 25 | resqcld 13893 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ ℕ → (𝑐↑2) ∈
ℝ) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈ ℝ) |
28 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
29 | 28 | resqcld 13893 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℕ → (𝑦↑2) ∈
ℝ) |
30 | 29 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈
ℝ) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℝ) |
32 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
33 | 32 | resqcld 13893 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℕ → (𝑥↑2) ∈
ℝ) |
34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈
ℝ) |
35 | 34 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℝ) |
36 | | readdcan 11079 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐↑2) ∈ ℝ ∧
(𝑦↑2) ∈ ℝ
∧ (𝑥↑2) ∈
ℝ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2))) |
37 | 27, 31, 35, 36 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2))) |
38 | 28 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 ∈ ℝ) |
39 | 25 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑐 ∈ ℝ) |
40 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
41 | 40 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℕ → 0 ≤
𝑦) |
42 | 41 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑦) |
43 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℕ0) |
44 | 43 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ ℕ → 0 ≤
𝑐) |
45 | 44 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑐) |
46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑐↑2) = (𝑦↑2)) |
47 | 46 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑦↑2) = (𝑐↑2)) |
48 | 38, 39, 42, 45, 47 | sq11d 13903 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 = 𝑐) |
49 | 48 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑦↑2) → 𝑦 = 𝑐)) |
50 | 37, 49 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑦 = 𝑐)) |
51 | 50 | adantld 490 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)) |
52 | 51 | ralrimiva 3107 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)) |
53 | 23, 24, 52 | jca31 514 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ((𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))) |
54 | 12, 22, 53 | rspcedvd 3555 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ∃𝑏 ∈ ℕ ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
55 | | breq2 5074 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (𝑥 ≤ 𝑏 ↔ 𝑥 ≤ 𝑐)) |
56 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2)) |
57 | 56 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑐 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑐↑2))) |
58 | 57 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
59 | 55, 58 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
60 | 59 | reu8 3663 |
. . . . . . . . . . . . 13
⊢
(∃!𝑏 ∈
ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
61 | 54, 60 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
62 | 61 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
63 | 62 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
64 | 63 | impcom 407 |
. . . . . . . . 9
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
65 | | eqeq2 2750 |
. . . . . . . . . . . . 13
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑥↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
66 | 65 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
67 | 66 | reubidv 3315 |
. . . . . . . . . . 11
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
68 | 67 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
69 | 68 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
70 | 64, 69 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)) |
71 | 3, 10, 70 | rspcedvd 3555 |
. . . . . . 7
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
72 | 11 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℕ) |
73 | 72 | adantl 481 |
. . . . . . . 8
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℕ) |
74 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (𝑎 ≤ 𝑏 ↔ 𝑦 ≤ 𝑏)) |
75 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → (𝑎↑2) = (𝑦↑2)) |
76 | 75 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → ((𝑎↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑏↑2))) |
77 | 76 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = 𝑃)) |
78 | 74, 77 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → ((𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))) |
79 | 78 | reubidv 3315 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))) |
80 | 79 | adantl 481 |
. . . . . . . 8
⊢ (((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑦) → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))) |
81 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → 𝑥 ∈ ℕ) |
82 | | breq2 5074 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (𝑦 ≤ 𝑏 ↔ 𝑦 ≤ 𝑥)) |
83 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑥 → (𝑏↑2) = (𝑥↑2)) |
84 | 83 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑥↑2))) |
85 | 84 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
86 | 82, 85 | anbi12d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑥 → ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
87 | | equequ1 2029 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → (𝑏 = 𝑐 ↔ 𝑥 = 𝑐)) |
88 | 87 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))) |
89 | 88 | ralbidv 3120 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑥 → (∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))) |
90 | 86, 89 | anbi12d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑥 → (((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))) |
91 | 90 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) ∧ 𝑏 = 𝑥) → (((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))) |
92 | | ltnle 10985 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
93 | 28, 32, 92 | syl2anr 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
94 | 28 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 ∈ ℝ) |
95 | 32 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑥 ∈ ℝ) |
96 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥) |
97 | 94, 95, 96 | ltled 11053 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 ≤ 𝑥) |
98 | 97 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 → 𝑦 ≤ 𝑥)) |
99 | 93, 98 | sylbird 259 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬
𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥)) |
100 | 99 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → 𝑦 ≤ 𝑥) |
101 | 29 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ → (𝑦↑2) ∈
ℂ) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈
ℂ) |
103 | 33 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℕ → (𝑥↑2) ∈
ℂ) |
104 | 103 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈
ℂ) |
105 | 102, 104 | addcomd 11107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) |
106 | 105 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) |
107 | 34 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈
ℂ) |
108 | 107 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈
ℂ) |
109 | 30 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈
ℂ) |
110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈
ℂ) |
111 | 108, 110 | addcomd 11107 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑥↑2) + (𝑦↑2)) = ((𝑦↑2) + (𝑥↑2))) |
112 | 111 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)))) |
113 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈
ℝ) |
114 | 33 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈
ℝ) |
115 | 29 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈
ℝ) |
116 | | readdcan 11079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑐↑2) ∈ ℝ ∧
(𝑥↑2) ∈ ℝ
∧ (𝑦↑2) ∈
ℝ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2))) |
117 | 113, 114,
115, 116 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2))) |
118 | 112, 117 | bitrd 278 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑥↑2))) |
119 | 25 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 ∈ ℝ) |
120 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈
ℝ) |
121 | 120 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 ∈ ℝ) |
122 | 44 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑐) |
123 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
124 | 123 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℕ → 0 ≤
𝑥) |
125 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 ≤
𝑥) |
126 | 125 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑥) |
127 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → (𝑐↑2) = (𝑥↑2)) |
128 | 119, 121,
122, 126, 127 | sq11d 13903 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 = 𝑥) |
129 | 128 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 = 𝑐) |
130 | 129 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑥↑2) → 𝑥 = 𝑐)) |
131 | 118, 130 | sylbid 239 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑥 = 𝑐)) |
132 | 131 | adantld 490 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)) |
133 | 132 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
∀𝑐 ∈ ℕ
((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)) |
134 | 133 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)) |
135 | 100, 106,
134 | jca31 514 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ((𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))) |
136 | 81, 91, 135 | rspcedvd 3555 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ∃𝑏 ∈ ℕ ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
137 | | breq2 5074 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (𝑦 ≤ 𝑏 ↔ 𝑦 ≤ 𝑐)) |
138 | 56 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑐 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑐↑2))) |
139 | 138 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
140 | 137, 139 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
141 | 140 | reu8 3663 |
. . . . . . . . . . . . 13
⊢
(∃!𝑏 ∈
ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
142 | 136, 141 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
143 | 142 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬
𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
144 | 143 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
145 | 144 | impcom 407 |
. . . . . . . . 9
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
146 | | eqeq2 2750 |
. . . . . . . . . . . . 13
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑦↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
147 | 146 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
148 | 147 | reubidv 3315 |
. . . . . . . . . . 11
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
149 | 148 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
150 | 149 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
151 | 145, 150 | mpbird 256 |
. . . . . . . 8
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)) |
152 | 73, 80, 151 | rspcedvd 3555 |
. . . . . . 7
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
153 | 71, 152 | pm2.61ian 808 |
. . . . . 6
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
154 | 153 | ex 412 |
. . . . 5
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
155 | 154 | adantl 481 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
156 | 155 | rexlimdvva 3222 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
(∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
157 | 1, 156 | mpd 15 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
158 | | reurex 3352 |
. . . . 5
⊢
(∃!𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
159 | 158 | a1i 11 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) →
(∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
160 | 159 | ralrimiva 3107 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∀𝑎 ∈ ℕ
(∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
161 | | 2sqmo 26490 |
. . . . 5
⊢ (𝑃 ∈ ℙ →
∃*𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
162 | | nnssnn0 12166 |
. . . . . 6
⊢ ℕ
⊆ ℕ0 |
163 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑎ℕ |
164 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑎ℕ0 |
165 | 163, 164 | ssrmof 3982 |
. . . . . 6
⊢ (ℕ
⊆ ℕ0 → (∃*𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
166 | 162, 165 | ax-mp 5 |
. . . . 5
⊢
(∃*𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
167 | | ssrexv 3984 |
. . . . . . 7
⊢ (ℕ
⊆ ℕ0 → (∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
168 | 162, 167 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
169 | 168 | rmoimi 3672 |
. . . . 5
⊢
(∃*𝑎 ∈
ℕ ∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
170 | 161, 166,
169 | 3syl 18 |
. . . 4
⊢ (𝑃 ∈ ℙ →
∃*𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
171 | 170 | adantr 480 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∃*𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
172 | | rmoim 3670 |
. . 3
⊢
(∀𝑎 ∈
ℕ (∃!𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
173 | 160, 171,
172 | sylc 65 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∃*𝑎 ∈ ℕ
∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
174 | | reu5 3351 |
. 2
⊢
(∃!𝑎 ∈
ℕ ∃!𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
175 | 157, 173,
174 | sylanbrc 582 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∃!𝑎 ∈ ℕ
∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |