MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunnlem1 Structured version   Visualization version   GIF version

Theorem 2sqreunnlem1 27387
Description: Lemma 1 for 2sqreunn 27395. (Contributed by AV, 11-Jun-2023.)
Assertion
Ref Expression
2sqreunnlem1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreunnlem1
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqnn 27377 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
2 simpll 766 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑥 ∈ ℕ)
32adantl 481 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℕ)
4 breq1 5092 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎𝑏𝑥𝑏))
5 oveq1 7353 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2))
65oveq1d 7361 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2)))
76eqeq1d 2733 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
84, 7anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
98reubidv 3362 . . . . . . . . 9 (𝑎 = 𝑥 → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
109adantl 481 . . . . . . . 8 (((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑥) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
11 simpr 484 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
1211adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → 𝑦 ∈ ℕ)
13 breq2 5093 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑥𝑏𝑥𝑦))
14 oveq1 7353 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2))
1514oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))
1615eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))))
1713, 16anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))))
18 equequ1 2026 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → (𝑏 = 𝑐𝑦 = 𝑐))
1918imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2019ralbidv 3155 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → (∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2117, 20anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
2221adantl 481 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑏 = 𝑦) → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
23 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → 𝑥𝑦)
24 eqidd 2732 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))
25 nnre 12132 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2625resqcld 14032 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℕ → (𝑐↑2) ∈ ℝ)
2726adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈ ℝ)
28 nnre 12132 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2928resqcld 14032 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ → (𝑦↑2) ∈ ℝ)
3029adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈ ℝ)
3130ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℝ)
32 nnre 12132 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
3332resqcld 14032 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℕ → (𝑥↑2) ∈ ℝ)
3433adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈ ℝ)
3534ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℝ)
36 readdcan 11287 . . . . . . . . . . . . . . . . . . 19 (((𝑐↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3727, 31, 35, 36syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3828ad4antlr 733 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 ∈ ℝ)
3925ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑐 ∈ ℝ)
40 nnnn0 12388 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
4140nn0ge0d 12445 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ → 0 ≤ 𝑦)
4241ad4antlr 733 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑦)
43 nnnn0 12388 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
4443nn0ge0d 12445 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ → 0 ≤ 𝑐)
4544ad2antlr 727 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑐)
46 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑐↑2) = (𝑦↑2))
4746eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑦↑2) = (𝑐↑2))
4838, 39, 42, 45, 47sq11d 14165 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 = 𝑐)
4948ex 412 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑦↑2) → 𝑦 = 𝑐))
5037, 49sylbid 240 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑦 = 𝑐))
5150adantld 490 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5251ralrimiva 3124 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5323, 24, 52jca31 514 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
5412, 22, 53rspcedvd 3574 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ∃𝑏 ∈ ℕ ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
55 breq2 5093 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑥𝑏𝑥𝑐))
56 oveq1 7353 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2))
5756oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑐↑2)))
5857eqeq1d 2733 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
5955, 58anbi12d 632 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6059reu8 3687 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
6154, 60sylibr 234 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6261ex 412 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6362adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6463impcom 407 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
65 eqeq2 2743 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑥↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6665anbi2d 630 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6766reubidv 3362 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6867adantl 481 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6968adantl 481 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
7064, 69mpbird 257 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
713, 10, 70rspcedvd 3574 . . . . . . 7 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
7211adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℕ)
7372adantl 481 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℕ)
74 breq1 5092 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
75 oveq1 7353 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (𝑎↑2) = (𝑦↑2))
7675oveq1d 7361 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝑎↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑏↑2)))
7776eqeq1d 2733 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
7874, 77anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
7978reubidv 3362 . . . . . . . . 9 (𝑎 = 𝑦 → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
8079adantl 481 . . . . . . . 8 (((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑦) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
81 simpll 766 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → 𝑥 ∈ ℕ)
82 breq2 5093 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
83 oveq1 7353 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑥 → (𝑏↑2) = (𝑥↑2))
8483oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑥↑2)))
8584eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))))
8682, 85anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))))
87 equequ1 2026 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → (𝑏 = 𝑐𝑥 = 𝑐))
8887imbi2d 340 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
8988ralbidv 3155 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → (∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
9086, 89anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = 𝑥 → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
9190adantl 481 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) ∧ 𝑏 = 𝑥) → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
92 ltnle 11192 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9328, 32, 92syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9428ad2antlr 727 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 ∈ ℝ)
9532ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑥 ∈ ℝ)
96 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
9794, 95, 96ltled 11261 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦𝑥)
9897ex 412 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦𝑥))
9993, 98sylbird 260 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬ 𝑥𝑦𝑦𝑥))
10099imp 406 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
10129recnd 11140 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → (𝑦↑2) ∈ ℂ)
102101adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈ ℂ)
10333recnd 11140 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → (𝑥↑2) ∈ ℂ)
104103adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈ ℂ)
105102, 104addcomd 11315 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
106105adantr 480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
10734recnd 11140 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈ ℂ)
108107adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℂ)
10930recnd 11140 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈ ℂ)
110109adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℂ)
111108, 110addcomd 11315 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑥↑2) + (𝑦↑2)) = ((𝑦↑2) + (𝑥↑2)))
112111eqeq2d 2742 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2))))
11326adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈ ℝ)
11433ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℝ)
11529ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℝ)
116 readdcan 11287 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
117113, 114, 115, 116syl3anc 1373 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
118112, 117bitrd 279 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
11925ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 ∈ ℝ)
12032adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℝ)
121120ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 ∈ ℝ)
12244ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑐)
123 nnnn0 12388 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
124123nn0ge0d 12445 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℕ → 0 ≤ 𝑥)
125124adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 ≤ 𝑥)
126125ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑥)
127 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → (𝑐↑2) = (𝑥↑2))
128119, 121, 122, 126, 127sq11d 14165 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 = 𝑥)
129128eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 = 𝑐)
130129ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑥↑2) → 𝑥 = 𝑐))
131118, 130sylbid 240 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑥 = 𝑐))
132131adantld 490 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
133132ralrimiva 3124 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
134133adantr 480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
135100, 106, 134jca31 514 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
13681, 91, 135rspcedvd 3574 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ∃𝑏 ∈ ℕ ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
137 breq2 5093 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑦𝑏𝑦𝑐))
13856oveq2d 7362 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑐↑2)))
139138eqeq1d 2733 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
140137, 139anbi12d 632 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
141140reu8 3687 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
142136, 141sylibr 234 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
143142ex 412 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
144143adantr 480 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
145144impcom 407 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
146 eqeq2 2743 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑦↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
147146anbi2d 630 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
148147reubidv 3362 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
149148adantl 481 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
150149adantl 481 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
151145, 150mpbird 257 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
15273, 80, 151rspcedvd 3574 . . . . . . 7 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
15371, 152pm2.61ian 811 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
154153ex 412 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
155154adantl 481 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
156155rexlimdvva 3189 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1571, 156mpd 15 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
158 reurex 3350 . . . . 5 (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
159158a1i 11 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
160159ralrimiva 3124 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∀𝑎 ∈ ℕ (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
161 2sqmo 27375 . . . . 5 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
162 nnssnn0 12384 . . . . . 6 ℕ ⊆ ℕ0
163 nfcv 2894 . . . . . . 7 𝑎
164 nfcv 2894 . . . . . . 7 𝑎0
165163, 164ssrmof 3997 . . . . . 6 (ℕ ⊆ ℕ0 → (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
166162, 165ax-mp 5 . . . . 5 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
167 ssrexv 3999 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
168162, 167ax-mp 5 . . . . . 6 (∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
169168rmoimi 3696 . . . . 5 (∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
170161, 166, 1693syl 18 . . . 4 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
171170adantr 480 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
172 rmoim 3694 . . 3 (∀𝑎 ∈ ℕ (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
173160, 171, 172sylc 65 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
174 reu5 3348 . 2 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
175157, 173, 174sylanbrc 583 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  ∃*wrmo 3345  wss 3897   class class class wbr 5089  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cn 12125  2c2 12180  4c4 12182  0cn0 12381   mod cmo 13773  cexp 13968  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-srg 20105  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443  df-assa 21790  df-asp 21791  df-ascl 21792  df-psr 21846  df-mvr 21847  df-mpl 21848  df-opsr 21850  df-evls 22009  df-evl 22010  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-evl1 22231  df-mdeg 25987  df-deg1 25988  df-mon1 26063  df-uc1p 26064  df-q1p 26065  df-r1p 26066  df-lgs 27233
This theorem is referenced by:  2sqreunnltlem  27388  2sqreunn  27395
  Copyright terms: Public domain W3C validator