| Step | Hyp | Ref
| Expression |
| 1 | | 2sqnn 27483 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2))) |
| 2 | | simpll 767 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑥 ∈ ℕ) |
| 3 | 2 | adantl 481 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℕ) |
| 4 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (𝑎 ≤ 𝑏 ↔ 𝑥 ≤ 𝑏)) |
| 5 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2)) |
| 6 | 5 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2))) |
| 7 | 6 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑥 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = 𝑃)) |
| 8 | 4, 7 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑥 → ((𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))) |
| 9 | 8 | reubidv 3398 |
. . . . . . . . 9
⊢ (𝑎 = 𝑥 → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))) |
| 10 | 9 | adantl 481 |
. . . . . . . 8
⊢ (((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑥) → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))) |
| 11 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℕ) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ ℕ) |
| 13 | | breq2 5147 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑦 → (𝑥 ≤ 𝑏 ↔ 𝑥 ≤ 𝑦)) |
| 14 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2)) |
| 15 | 14 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) |
| 16 | 15 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑦 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 17 | 13, 16 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑦 → ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 18 | | equequ1 2024 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑦 → (𝑏 = 𝑐 ↔ 𝑦 = 𝑐)) |
| 19 | 18 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑦 → (((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))) |
| 20 | 19 | ralbidv 3178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑦 → (∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))) |
| 21 | 17, 20 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑦 → (((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))) |
| 22 | 21 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑏 = 𝑦) → (((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))) |
| 23 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) |
| 24 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) |
| 25 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℝ) |
| 26 | 25 | resqcld 14165 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ ℕ → (𝑐↑2) ∈
ℝ) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈ ℝ) |
| 28 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
| 29 | 28 | resqcld 14165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℕ → (𝑦↑2) ∈
ℝ) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈
ℝ) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℝ) |
| 32 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
| 33 | 32 | resqcld 14165 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℕ → (𝑥↑2) ∈
ℝ) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈
ℝ) |
| 35 | 34 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℝ) |
| 36 | | readdcan 11435 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐↑2) ∈ ℝ ∧
(𝑦↑2) ∈ ℝ
∧ (𝑥↑2) ∈
ℝ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2))) |
| 37 | 27, 31, 35, 36 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2))) |
| 38 | 28 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 ∈ ℝ) |
| 39 | 25 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑐 ∈ ℝ) |
| 40 | | nnnn0 12533 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 41 | 40 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ ℕ → 0 ≤
𝑦) |
| 42 | 41 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑦) |
| 43 | | nnnn0 12533 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℕ0) |
| 44 | 43 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 ∈ ℕ → 0 ≤
𝑐) |
| 45 | 44 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑐) |
| 46 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑐↑2) = (𝑦↑2)) |
| 47 | 46 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑦↑2) = (𝑐↑2)) |
| 48 | 38, 39, 42, 45, 47 | sq11d 14297 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑥 ∈
ℕ ∧ 𝑦 ∈
ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 = 𝑐) |
| 49 | 48 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑦↑2) → 𝑦 = 𝑐)) |
| 50 | 37, 49 | sylbid 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑦 = 𝑐)) |
| 51 | 50 | adantld 490 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)) |
| 52 | 51 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)) |
| 53 | 23, 24, 52 | jca31 514 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ((𝑥 ≤ 𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))) |
| 54 | 12, 22, 53 | rspcedvd 3624 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ∃𝑏 ∈ ℕ ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
| 55 | | breq2 5147 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (𝑥 ≤ 𝑏 ↔ 𝑥 ≤ 𝑐)) |
| 56 | | oveq1 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2)) |
| 57 | 56 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑐 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑐↑2))) |
| 58 | 57 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 59 | 55, 58 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 60 | 59 | reu8 3739 |
. . . . . . . . . . . . 13
⊢
(∃!𝑏 ∈
ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥 ≤ 𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
| 61 | 54, 60 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥 ≤ 𝑦) → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 62 | 61 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 63 | 62 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 64 | 63 | impcom 407 |
. . . . . . . . 9
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 65 | | eqeq2 2749 |
. . . . . . . . . . . . 13
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑥↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 66 | 65 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 67 | 66 | reubidv 3398 |
. . . . . . . . . . 11
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 68 | 67 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 69 | 68 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 70 | 64, 69 | mpbird 257 |
. . . . . . . 8
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥 ≤ 𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)) |
| 71 | 3, 10, 70 | rspcedvd 3624 |
. . . . . . 7
⊢ ((𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 72 | 11 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℕ) |
| 73 | 72 | adantl 481 |
. . . . . . . 8
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℕ) |
| 74 | | breq1 5146 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (𝑎 ≤ 𝑏 ↔ 𝑦 ≤ 𝑏)) |
| 75 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑦 → (𝑎↑2) = (𝑦↑2)) |
| 76 | 75 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑦 → ((𝑎↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑏↑2))) |
| 77 | 76 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑦 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = 𝑃)) |
| 78 | 74, 77 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑦 → ((𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))) |
| 79 | 78 | reubidv 3398 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))) |
| 80 | 79 | adantl 481 |
. . . . . . . 8
⊢ (((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑦) → (∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))) |
| 81 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → 𝑥 ∈ ℕ) |
| 82 | | breq2 5147 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (𝑦 ≤ 𝑏 ↔ 𝑦 ≤ 𝑥)) |
| 83 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑥 → (𝑏↑2) = (𝑥↑2)) |
| 84 | 83 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑥↑2))) |
| 85 | 84 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 86 | 82, 85 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑥 → ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 87 | | equequ1 2024 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑥 → (𝑏 = 𝑐 ↔ 𝑥 = 𝑐)) |
| 88 | 87 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑥 → (((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))) |
| 89 | 88 | ralbidv 3178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑥 → (∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))) |
| 90 | 86, 89 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑥 → (((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))) |
| 91 | 90 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) ∧ 𝑏 = 𝑥) → (((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))) |
| 92 | | ltnle 11340 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
| 93 | 28, 32, 92 | syl2anr 597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦)) |
| 94 | 28 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 ∈ ℝ) |
| 95 | 32 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑥 ∈ ℝ) |
| 96 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥) |
| 97 | 94, 95, 96 | ltled 11409 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 ≤ 𝑥) |
| 98 | 97 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 → 𝑦 ≤ 𝑥)) |
| 99 | 93, 98 | sylbird 260 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬
𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑥)) |
| 100 | 99 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → 𝑦 ≤ 𝑥) |
| 101 | 29 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ → (𝑦↑2) ∈
ℂ) |
| 102 | 101 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈
ℂ) |
| 103 | 33 | recnd 11289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℕ → (𝑥↑2) ∈
ℂ) |
| 104 | 103 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈
ℂ) |
| 105 | 102, 104 | addcomd 11463 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) |
| 106 | 105 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) |
| 107 | 34 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈
ℂ) |
| 108 | 107 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈
ℂ) |
| 109 | 30 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈
ℂ) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈
ℂ) |
| 111 | 108, 110 | addcomd 11463 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑥↑2) + (𝑦↑2)) = ((𝑦↑2) + (𝑥↑2))) |
| 112 | 111 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)))) |
| 113 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈
ℝ) |
| 114 | 33 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈
ℝ) |
| 115 | 29 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈
ℝ) |
| 116 | | readdcan 11435 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑐↑2) ∈ ℝ ∧
(𝑥↑2) ∈ ℝ
∧ (𝑦↑2) ∈
ℝ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2))) |
| 117 | 113, 114,
115, 116 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2))) |
| 118 | 112, 117 | bitrd 279 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑥↑2))) |
| 119 | 25 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 ∈ ℝ) |
| 120 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈
ℝ) |
| 121 | 120 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 ∈ ℝ) |
| 122 | 44 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑐) |
| 123 | | nnnn0 12533 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℕ0) |
| 124 | 123 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ ℕ → 0 ≤
𝑥) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 ≤
𝑥) |
| 126 | 125 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑥) |
| 127 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → (𝑐↑2) = (𝑥↑2)) |
| 128 | 119, 121,
122, 126, 127 | sq11d 14297 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 = 𝑥) |
| 129 | 128 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 = 𝑐) |
| 130 | 129 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑥↑2) → 𝑥 = 𝑐)) |
| 131 | 118, 130 | sylbid 240 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑥 = 𝑐)) |
| 132 | 131 | adantld 490 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)) |
| 133 | 132 | ralrimiva 3146 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) →
∀𝑐 ∈ ℕ
((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)) |
| 134 | 133 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)) |
| 135 | 100, 106,
134 | jca31 514 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ((𝑦 ≤ 𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))) |
| 136 | 81, 91, 135 | rspcedvd 3624 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ∃𝑏 ∈ ℕ ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
| 137 | | breq2 5147 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (𝑦 ≤ 𝑏 ↔ 𝑦 ≤ 𝑐)) |
| 138 | 56 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑐 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑐↑2))) |
| 139 | 138 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑐 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 140 | 137, 139 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑐 → ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 141 | 140 | reu8 3739 |
. . . . . . . . . . . . 13
⊢
(∃!𝑏 ∈
ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦 ≤ 𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐))) |
| 142 | 136, 141 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬
𝑥 ≤ 𝑦) → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 143 | 142 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬
𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 144 | 143 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑥 ≤ 𝑦 → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 145 | 144 | impcom 407 |
. . . . . . . . 9
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 146 | | eqeq2 2749 |
. . . . . . . . . . . . 13
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑦↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))) |
| 147 | 146 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 148 | 147 | reubidv 3398 |
. . . . . . . . . . 11
⊢ (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 149 | 148 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 150 | 149 | adantl 481 |
. . . . . . . . 9
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))) |
| 151 | 145, 150 | mpbird 257 |
. . . . . . . 8
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦 ≤ 𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)) |
| 152 | 73, 80, 151 | rspcedvd 3624 |
. . . . . . 7
⊢ ((¬
𝑥 ≤ 𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 153 | 71, 152 | pm2.61ian 812 |
. . . . . 6
⊢ (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 154 | 153 | ex 412 |
. . . . 5
⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 155 | 154 | adantl 481 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 156 | 155 | rexlimdvva 3213 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
(∃𝑥 ∈ ℕ
∃𝑦 ∈ ℕ
𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 157 | 1, 156 | mpd 15 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 158 | | reurex 3384 |
. . . . 5
⊢
(∃!𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 159 | 158 | a1i 11 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) →
(∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 160 | 159 | ralrimiva 3146 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∀𝑎 ∈ ℕ
(∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 161 | | 2sqmo 27481 |
. . . . 5
⊢ (𝑃 ∈ ℙ →
∃*𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 162 | | nnssnn0 12529 |
. . . . . 6
⊢ ℕ
⊆ ℕ0 |
| 163 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑎ℕ |
| 164 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑎ℕ0 |
| 165 | 163, 164 | ssrmof 4051 |
. . . . . 6
⊢ (ℕ
⊆ ℕ0 → (∃*𝑎 ∈ ℕ0 ∃𝑏 ∈ ℕ0
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 166 | 162, 165 | ax-mp 5 |
. . . . 5
⊢
(∃*𝑎 ∈
ℕ0 ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 167 | | ssrexv 4053 |
. . . . . . 7
⊢ (ℕ
⊆ ℕ0 → (∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 168 | 162, 167 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 169 | 168 | rmoimi 3748 |
. . . . 5
⊢
(∃*𝑎 ∈
ℕ ∃𝑏 ∈
ℕ0 (𝑎 ≤
𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 170 | 161, 166,
169 | 3syl 18 |
. . . 4
⊢ (𝑃 ∈ ℙ →
∃*𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 171 | 170 | adantr 480 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∃*𝑎 ∈ ℕ
∃𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 172 | | rmoim 3746 |
. . 3
⊢
(∀𝑎 ∈
ℕ (∃!𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 173 | 160, 171,
172 | sylc 65 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∃*𝑎 ∈ ℕ
∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |
| 174 | | reu5 3382 |
. 2
⊢
(∃!𝑎 ∈
ℕ ∃!𝑏 ∈
ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
| 175 | 157, 173,
174 | sylanbrc 583 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) →
∃!𝑎 ∈ ℕ
∃!𝑏 ∈ ℕ
(𝑎 ≤ 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) |