MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreunnlem1 Structured version   Visualization version   GIF version

Theorem 2sqreunnlem1 26025
Description: Lemma 1 for 2sqreunn 26033. (Contributed by AV, 11-Jun-2023.)
Assertion
Ref Expression
2sqreunnlem1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Distinct variable group:   𝑃,𝑎,𝑏

Proof of Theorem 2sqreunnlem1
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqnn 26015 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)))
2 simpll 765 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑥 ∈ ℕ)
32adantl 484 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑥 ∈ ℕ)
4 breq1 5069 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎𝑏𝑥𝑏))
5 oveq1 7163 . . . . . . . . . . . . 13 (𝑎 = 𝑥 → (𝑎↑2) = (𝑥↑2))
65oveq1d 7171 . . . . . . . . . . . 12 (𝑎 = 𝑥 → ((𝑎↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑏↑2)))
76eqeq1d 2823 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
84, 7anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑥 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
98reubidv 3389 . . . . . . . . 9 (𝑎 = 𝑥 → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
109adantl 484 . . . . . . . 8 (((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑥) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃)))
11 simpr 487 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
1211adantr 483 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → 𝑦 ∈ ℕ)
13 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (𝑥𝑏𝑥𝑦))
14 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑦 → (𝑏↑2) = (𝑦↑2))
1514oveq2d 7172 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))
1615eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))))
1713, 16anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))))
18 equequ1 2032 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑦 → (𝑏 = 𝑐𝑦 = 𝑐))
1918imbi2d 343 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑦 → (((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2019ralbidv 3197 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑦 → (∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
2117, 20anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
2221adantl 484 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑏 = 𝑦) → (((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))))
23 simpr 487 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → 𝑥𝑦)
24 eqidd 2822 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2)))
25 nnre 11645 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2625resqcld 13612 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ ℕ → (𝑐↑2) ∈ ℝ)
2726adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈ ℝ)
28 nnre 11645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
2928resqcld 13612 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ → (𝑦↑2) ∈ ℝ)
3029adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈ ℝ)
3130ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℝ)
32 nnre 11645 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
3332resqcld 13612 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℕ → (𝑥↑2) ∈ ℝ)
3433adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈ ℝ)
3534ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℝ)
36 readdcan 10814 . . . . . . . . . . . . . . . . . . 19 (((𝑐↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3727, 31, 35, 36syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑦↑2)))
3828ad4antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 ∈ ℝ)
3925ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑐 ∈ ℝ)
40 nnnn0 11905 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
4140nn0ge0d 11959 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ℕ → 0 ≤ 𝑦)
4241ad4antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑦)
43 nnnn0 11905 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
4443nn0ge0d 11959 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 ∈ ℕ → 0 ≤ 𝑐)
4544ad2antlr 725 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 0 ≤ 𝑐)
46 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑐↑2) = (𝑦↑2))
4746eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → (𝑦↑2) = (𝑐↑2))
4838, 39, 42, 45, 47sq11d 13622 . . . . . . . . . . . . . . . . . . 19 (((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑦↑2)) → 𝑦 = 𝑐)
4948ex 415 . . . . . . . . . . . . . . . . . 18 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑦↑2) → 𝑦 = 𝑐))
5037, 49sylbid 242 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → (((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑦 = 𝑐))
5150adantld 493 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) ∧ 𝑐 ∈ ℕ) → ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5251ralrimiva 3182 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐))
5323, 24, 52jca31 517 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ((𝑥𝑦 ∧ ((𝑥↑2) + (𝑦↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑦 = 𝑐)))
5412, 22, 53rspcedvd 3626 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ∃𝑏 ∈ ℕ ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
55 breq2 5070 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑥𝑏𝑥𝑐))
56 oveq1 7163 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑐 → (𝑏↑2) = (𝑐↑2))
5756oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑐↑2)))
5857eqeq1d 2823 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
5955, 58anbi12d 632 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6059reu8 3724 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑥𝑐 ∧ ((𝑥↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
6154, 60sylibr 236 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑥𝑦) → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6261ex 415 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6362adantr 483 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6463impcom 410 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
65 eqeq2 2833 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑥↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
6665anbi2d 630 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6766reubidv 3389 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6867adantl 484 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
6968adantl 484 . . . . . . . . 9 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
7064, 69mpbird 259 . . . . . . . 8 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑥𝑏 ∧ ((𝑥↑2) + (𝑏↑2)) = 𝑃))
713, 10, 70rspcedvd 3626 . . . . . . 7 ((𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
7211adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → 𝑦 ∈ ℕ)
7372adantl 484 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → 𝑦 ∈ ℕ)
74 breq1 5069 . . . . . . . . . . 11 (𝑎 = 𝑦 → (𝑎𝑏𝑦𝑏))
75 oveq1 7163 . . . . . . . . . . . . 13 (𝑎 = 𝑦 → (𝑎↑2) = (𝑦↑2))
7675oveq1d 7171 . . . . . . . . . . . 12 (𝑎 = 𝑦 → ((𝑎↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑏↑2)))
7776eqeq1d 2823 . . . . . . . . . . 11 (𝑎 = 𝑦 → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
7874, 77anbi12d 632 . . . . . . . . . 10 (𝑎 = 𝑦 → ((𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
7978reubidv 3389 . . . . . . . . 9 (𝑎 = 𝑦 → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
8079adantl 484 . . . . . . . 8 (((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) ∧ 𝑎 = 𝑦) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃)))
81 simpll 765 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → 𝑥 ∈ ℕ)
82 breq2 5070 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (𝑦𝑏𝑦𝑥))
83 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑥 → (𝑏↑2) = (𝑥↑2))
8483oveq2d 7172 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑥↑2)))
8584eqeq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))))
8682, 85anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))))
87 equequ1 2032 . . . . . . . . . . . . . . . . . 18 (𝑏 = 𝑥 → (𝑏 = 𝑐𝑥 = 𝑐))
8887imbi2d 343 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝑥 → (((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
8988ralbidv 3197 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑥 → (∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐) ↔ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
9086, 89anbi12d 632 . . . . . . . . . . . . . . 15 (𝑏 = 𝑥 → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
9190adantl 484 . . . . . . . . . . . . . 14 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) ∧ 𝑏 = 𝑥) → (((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)) ↔ ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))))
92 ltnle 10720 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9328, 32, 92syl2anr 598 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥 ↔ ¬ 𝑥𝑦))
9428ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 ∈ ℝ)
9532ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑥 ∈ ℝ)
96 simpr 487 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦 < 𝑥)
9794, 95, 96ltled 10788 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑦 < 𝑥) → 𝑦𝑥)
9897ex 415 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦 < 𝑥𝑦𝑥))
9993, 98sylbird 262 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬ 𝑥𝑦𝑦𝑥))
10099imp 409 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
10129recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → (𝑦↑2) ∈ ℂ)
102101adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈ ℂ)
10333recnd 10669 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℕ → (𝑥↑2) ∈ ℂ)
104103adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈ ℂ)
105102, 104addcomd 10842 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
106105adantr 483 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2)))
10734recnd 10669 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥↑2) ∈ ℂ)
108107adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℂ)
10930recnd 10669 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑦↑2) ∈ ℂ)
110109adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℂ)
111108, 110addcomd 10842 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑥↑2) + (𝑦↑2)) = ((𝑦↑2) + (𝑥↑2)))
112111eqeq2d 2832 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2))))
11326adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑐↑2) ∈ ℝ)
11433ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑥↑2) ∈ ℝ)
11529ad2antlr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (𝑦↑2) ∈ ℝ)
116 readdcan 10814 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐↑2) ∈ ℝ ∧ (𝑥↑2) ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
117113, 114, 115, 116syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑦↑2) + (𝑥↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
118112, 117bitrd 281 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ (𝑐↑2) = (𝑥↑2)))
11925ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 ∈ ℝ)
12032adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 𝑥 ∈ ℝ)
121120ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 ∈ ℝ)
12244ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑐)
123 nnnn0 11905 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
124123nn0ge0d 11959 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℕ → 0 ≤ 𝑥)
125124adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → 0 ≤ 𝑥)
126125ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 0 ≤ 𝑥)
127 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → (𝑐↑2) = (𝑥↑2))
128119, 121, 122, 126, 127sq11d 13622 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑐 = 𝑥)
129128eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 ((((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) ∧ (𝑐↑2) = (𝑥↑2)) → 𝑥 = 𝑐)
130129ex 415 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑐↑2) = (𝑥↑2) → 𝑥 = 𝑐))
131118, 130sylbid 242 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → (((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)) → 𝑥 = 𝑐))
132131adantld 493 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑐 ∈ ℕ) → ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
133132ralrimiva 3182 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
134133adantr 483 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐))
135100, 106, 134jca31 517 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ((𝑦𝑥 ∧ ((𝑦↑2) + (𝑥↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑥 = 𝑐)))
13681, 91, 135rspcedvd 3626 . . . . . . . . . . . . 13 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ∃𝑏 ∈ ℕ ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
137 breq2 5070 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (𝑦𝑏𝑦𝑐))
13856oveq2d 7172 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑐 → ((𝑦↑2) + (𝑏↑2)) = ((𝑦↑2) + (𝑐↑2)))
139138eqeq1d 2823 . . . . . . . . . . . . . . 15 (𝑏 = 𝑐 → (((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)) ↔ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))))
140137, 139anbi12d 632 . . . . . . . . . . . . . 14 (𝑏 = 𝑐 → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ (𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2)))))
141140reu8 3724 . . . . . . . . . . . . 13 (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ↔ ∃𝑏 ∈ ℕ ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))) ∧ ∀𝑐 ∈ ℕ ((𝑦𝑐 ∧ ((𝑦↑2) + (𝑐↑2)) = ((𝑥↑2) + (𝑦↑2))) → 𝑏 = 𝑐)))
142136, 141sylibr 236 . . . . . . . . . . . 12 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ ¬ 𝑥𝑦) → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
143142ex 415 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
144143adantr 483 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (¬ 𝑥𝑦 → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
145144impcom 410 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
146 eqeq2 2833 . . . . . . . . . . . . 13 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (((𝑦↑2) + (𝑏↑2)) = 𝑃 ↔ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2))))
147146anbi2d 630 . . . . . . . . . . . 12 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ((𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
148147reubidv 3389 . . . . . . . . . . 11 (𝑃 = ((𝑥↑2) + (𝑦↑2)) → (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
149148adantl 484 . . . . . . . . . 10 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
150149adantl 484 . . . . . . . . 9 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → (∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃) ↔ ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = ((𝑥↑2) + (𝑦↑2)))))
151145, 150mpbird 259 . . . . . . . 8 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃!𝑏 ∈ ℕ (𝑦𝑏 ∧ ((𝑦↑2) + (𝑏↑2)) = 𝑃))
15273, 80, 151rspcedvd 3626 . . . . . . 7 ((¬ 𝑥𝑦 ∧ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2)))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
15371, 152pm2.61ian 810 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) ∧ 𝑃 = ((𝑥↑2) + (𝑦↑2))) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
154153ex 415 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
155154adantl 484 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
156155rexlimdvva 3294 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑃 = ((𝑥↑2) + (𝑦↑2)) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
1571, 156mpd 15 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
158 reurex 3431 . . . . 5 (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
159158a1i 11 . . . 4 (((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) ∧ 𝑎 ∈ ℕ) → (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
160159ralrimiva 3182 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∀𝑎 ∈ ℕ (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
161 2sqmo 26013 . . . . 5 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
162 nnssnn0 11901 . . . . . 6 ℕ ⊆ ℕ0
163 nfcv 2977 . . . . . . 7 𝑎
164 nfcv 2977 . . . . . . 7 𝑎0
165163, 164ssrmof 4032 . . . . . 6 (ℕ ⊆ ℕ0 → (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
166162, 165ax-mp 5 . . . . 5 (∃*𝑎 ∈ ℕ0𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
167 ssrexv 4034 . . . . . . 7 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
168162, 167ax-mp 5 . . . . . 6 (∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
169168rmoimi 3733 . . . . 5 (∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ0 (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
170161, 166, 1693syl 18 . . . 4 (𝑃 ∈ ℙ → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
171170adantr 483 . . 3 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
172 rmoim 3731 . . 3 (∀𝑎 ∈ ℕ (∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)) → (∃*𝑎 ∈ ℕ ∃𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) → ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
173160, 171, 172sylc 65 . 2 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
174 reu5 3430 . 2 (∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ (∃𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ∧ ∃*𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
175157, 173, 174sylanbrc 585 1 ((𝑃 ∈ ℙ ∧ (𝑃 mod 4) = 1) → ∃!𝑎 ∈ ℕ ∃!𝑏 ∈ ℕ (𝑎𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  ∃*wrmo 3141  wss 3936   class class class wbr 5066  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   < clt 10675  cle 10676  cn 11638  2c2 11693  4c4 11695  0cn0 11898   mod cmo 13238  cexp 13430  cprime 16015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-phi 16103  df-pc 16174  df-gz 16266  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-imas 16781  df-qus 16782  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-nsg 18277  df-eqg 18278  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-nzr 20031  df-rlreg 20056  df-domn 20057  df-idom 20058  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-evl1 20479  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-zn 20654  df-mdeg 24649  df-deg1 24650  df-mon1 24724  df-uc1p 24725  df-q1p 24726  df-r1p 24727  df-lgs 25871
This theorem is referenced by:  2sqreunnltlem  26026  2sqreunn  26033
  Copyright terms: Public domain W3C validator