![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-abid | Structured version Visualization version GIF version |
Description: Two ways to express a class. (Contributed by RP, 13-Feb-2025.) |
Ref | Expression |
---|---|
rp-abid | ⊢ 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel5 3655 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎) | |
2 | 1 | eqabi 2869 | 1 ⊢ 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 {cab 2709 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rex 3071 |
This theorem is referenced by: oaun2 42433 oaun3 42434 |
Copyright terms: Public domain | W3C validator |