Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-abid Structured version   Visualization version   GIF version

Theorem rp-abid 42430
Description: Two ways to express a class. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
rp-abid 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}
Distinct variable group:   𝐴,𝑎,𝑥

Proof of Theorem rp-abid
StepHypRef Expression
1 clel5 3655 . 2 (𝑥𝐴 ↔ ∃𝑎𝐴 𝑥 = 𝑎)
21eqabi 2869 1 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071
This theorem is referenced by:  oaun2  42433  oaun3  42434
  Copyright terms: Public domain W3C validator