Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaun3 Structured version   Visualization version   GIF version

Theorem oaun3 43364
Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oaun3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧

Proof of Theorem oaun3
StepHypRef Expression
1 oacl 8476 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
21difexd 5281 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V)
3 uniprg 4883 . . . . 5 ((𝐴 ∈ On ∧ ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
42, 3syldan 591 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
5 undif2 4436 . . . . 5 (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 ∪ (𝐴 +o 𝐵))
6 oaword1 8493 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
7 ssequn1 4145 . . . . . 6 (𝐴 ⊆ (𝐴 +o 𝐵) ↔ (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
86, 7sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
95, 8eqtrid 2776 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 +o 𝐵))
104, 9eqtrd 2764 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 +o 𝐵))
11 oaun3lem4 43359 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵))
12 unisng 4885 . . . 4 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1311, 12syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1410, 13uneq12d 4128 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}))
15 uniun 4890 . . 3 ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
16 df-tp 4590 . . . . 5 {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
17 rp-abid 43360 . . . . . . 7 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}
1817a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎})
19 oadif1 43362 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)})
20 eqidd 2730 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
2118, 19, 20tpeq123d 4708 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2216, 21eqtr3id 2778 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2322unieqd 4880 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2415, 23eqtr3id 2778 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
25 oaun3lem2 43357 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵))
26 ssequn2 4148 . . 3 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2725, 26sylib 218 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2814, 24, 273eqtr3rd 2773 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3444  cdif 3908  cun 3909  wss 3911  {csn 4585  {cpr 4587  {ctp 4589   cuni 4867  Oncon0 6320  suc csuc 6322  (class class class)co 7369   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator