Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaun3 Structured version   Visualization version   GIF version

Theorem oaun3 43381
Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oaun3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧

Proof of Theorem oaun3
StepHypRef Expression
1 oacl 8552 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
21difexd 5306 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V)
3 uniprg 4904 . . . . 5 ((𝐴 ∈ On ∧ ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
42, 3syldan 591 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
5 undif2 4457 . . . . 5 (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 ∪ (𝐴 +o 𝐵))
6 oaword1 8569 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
7 ssequn1 4166 . . . . . 6 (𝐴 ⊆ (𝐴 +o 𝐵) ↔ (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
86, 7sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
95, 8eqtrid 2783 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 +o 𝐵))
104, 9eqtrd 2771 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 +o 𝐵))
11 oaun3lem4 43376 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵))
12 unisng 4906 . . . 4 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1311, 12syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1410, 13uneq12d 4149 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}))
15 uniun 4911 . . 3 ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
16 df-tp 4611 . . . . 5 {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
17 rp-abid 43377 . . . . . . 7 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}
1817a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎})
19 oadif1 43379 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)})
20 eqidd 2737 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
2118, 19, 20tpeq123d 4729 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2216, 21eqtr3id 2785 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2322unieqd 4901 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2415, 23eqtr3id 2785 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
25 oaun3lem2 43374 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵))
26 ssequn2 4169 . . 3 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2725, 26sylib 218 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2814, 24, 273eqtr3rd 2780 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  wss 3931  {csn 4606  {cpr 4608  {ctp 4610   cuni 4888  Oncon0 6357  suc csuc 6359  (class class class)co 7410   +o coa 8482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-oadd 8489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator