Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaun3 Structured version   Visualization version   GIF version

Theorem oaun3 43485
Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.)
Assertion
Ref Expression
oaun3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧

Proof of Theorem oaun3
StepHypRef Expression
1 oacl 8450 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On)
21difexd 5267 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V)
3 uniprg 4872 . . . . 5 ((𝐴 ∈ On ∧ ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
42, 3syldan 591 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)))
5 undif2 4424 . . . . 5 (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 ∪ (𝐴 +o 𝐵))
6 oaword1 8467 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
7 ssequn1 4133 . . . . . 6 (𝐴 ⊆ (𝐴 +o 𝐵) ↔ (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
86, 7sylib 218 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵))
95, 8eqtrid 2778 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 +o 𝐵))
104, 9eqtrd 2766 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 +o 𝐵))
11 oaun3lem4 43480 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵))
12 unisng 4874 . . . 4 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1311, 12syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
1410, 13uneq12d 4116 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}))
15 uniun 4879 . . 3 ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
16 df-tp 4578 . . . . 5 {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
17 rp-abid 43481 . . . . . . 7 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}
1817a1i 11 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 = {𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎})
19 oadif1 43483 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)})
20 eqidd 2732 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} = {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)})
2118, 19, 20tpeq123d 4698 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}} = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2216, 21eqtr3id 2780 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2322unieqd 4869 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
2415, 23eqtr3id 2780 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ( {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
25 oaun3lem2 43478 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵))
26 ssequn2 4136 . . 3 ({𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2725, 26sylib 218 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵))
2814, 24, 273eqtr3rd 2775 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = {{𝑥 ∣ ∃𝑎𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 +o 𝑏)}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  cdif 3894  cun 3895  wss 3897  {csn 4573  {cpr 4575  {ctp 4577   cuni 4856  Oncon0 6306  suc csuc 6308  (class class class)co 7346   +o coa 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator