Step | Hyp | Ref
| Expression |
1 | | oacl 8534 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ∈ On) |
2 | 1 | difexd 5329 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V) |
3 | | uniprg 4925 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ ((𝐴 +o 𝐵) ∖ 𝐴) ∈ V) → ∪ {𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴))) |
4 | 2, 3 | syldan 591 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴))) |
5 | | undif2 4476 |
. . . . 5
⊢ (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 ∪ (𝐴 +o 𝐵)) |
6 | | oaword1 8551 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵)) |
7 | | ssequn1 4180 |
. . . . . 6
⊢ (𝐴 ⊆ (𝐴 +o 𝐵) ↔ (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵)) |
8 | 6, 7 | sylib 217 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ (𝐴 +o 𝐵)) = (𝐴 +o 𝐵)) |
9 | 5, 8 | eqtrid 2784 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∪ ((𝐴 +o 𝐵) ∖ 𝐴)) = (𝐴 +o 𝐵)) |
10 | 4, 9 | eqtrd 2772 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} = (𝐴 +o 𝐵)) |
11 | | oaun3lem4 42117 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵)) |
12 | | unisng 4929 |
. . . 4
⊢ ({𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵) → ∪
{{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}) |
13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {{𝑧
∣ ∃𝑎 ∈
𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}) |
14 | 10, 13 | uneq12d 4164 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∪ {𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} ∪ ∪
{{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)})) |
15 | | uniun 4934 |
. . 3
⊢ ∪ ({𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) = (∪ {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ ∪
{{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |
16 | | df-tp 4633 |
. . . . 5
⊢ {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}} = ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |
17 | | rp-abid 42118 |
. . . . . . 7
⊢ 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎} |
18 | 17 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}) |
19 | | oadif1 42120 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}) |
20 | | eqidd 2733 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)} = {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}) |
21 | 18, 19, 20 | tpeq123d 4752 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, ((𝐴 +o 𝐵) ∖ 𝐴), {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}} = {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |
22 | 16, 21 | eqtr3id 2786 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴, ((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) = {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |
23 | 22 | unieqd 4922 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ ({𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} ∪ {{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |
24 | 15, 23 | eqtr3id 2786 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∪ {𝐴,
((𝐴 +o 𝐵) ∖ 𝐴)} ∪ ∪
{{𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |
25 | | oaun3lem2 42115 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵)) |
26 | | ssequn2 4183 |
. . 3
⊢ ({𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵) ↔ ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵)) |
27 | 25, 26 | sylib 217 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∪ {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}) = (𝐴 +o 𝐵)) |
28 | 14, 24, 27 | 3eqtr3rd 2781 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) |