| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rru | Structured version Visualization version GIF version | ||
| Description: Relative version of
Russell's paradox ru 3786 (which corresponds to the
case 𝐴 = V).
Originally a subproof in pwnss 5352. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid df-nel 3047. (Revised by Steven Nguyen, 23-Nov-2022.) Reduce axiom usage. (Revised by GG, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| rru | ⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12 2831 | . . . . 5 ⊢ ((𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∧ 𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥}) → (𝑦 ∈ 𝑦 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) | |
| 2 | 1 | anidms 566 | . . . 4 ⊢ (𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (𝑦 ∈ 𝑦 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
| 3 | 2 | notbid 318 | . . 3 ⊢ (𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (¬ 𝑦 ∈ 𝑦 ↔ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
| 4 | eleq12 2831 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
| 5 | 4 | anidms 566 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
| 7 | 6 | cbvrabv 3447 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} |
| 8 | 3, 7 | elrab2 3695 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
| 9 | pclem6 1028 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴) | |
| 10 | 8, 9 | ax-mp 5 | 1 ⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 |
| This theorem is referenced by: pwnss 5352 |
| Copyright terms: Public domain | W3C validator |