Step | Hyp | Ref
| Expression |
1 | | eleq12 2842 |
. . . . . . 7
⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
2 | 1 | anidms 571 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
3 | 2 | notbid 322 |
. . . . 5
⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
4 | 3 | cbvrabv 3405 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} |
5 | 4 | eleq2i 2844 |
. . 3
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦}) |
6 | | elex 3429 |
. . . 4
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ V) |
7 | | elex 3429 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ V) |
8 | 7 | adantr 485 |
. . . 4
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥}) → {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ V) |
9 | | eleq1 2840 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
10 | | id 22 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
11 | 10, 10 | eleq12d 2847 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑦 ↔ 𝑧 ∈ 𝑧)) |
12 | 11 | notbid 322 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (¬ 𝑦 ∈ 𝑦 ↔ ¬ 𝑧 ∈ 𝑧)) |
13 | 9, 12 | anbi12d 634 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑦) ↔ (𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑧))) |
14 | | eleq1 2840 |
. . . . . 6
⊢ (𝑧 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (𝑧 ∈ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴)) |
15 | | eleq12 2842 |
. . . . . . . 8
⊢ ((𝑧 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∧ 𝑧 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥}) → (𝑧 ∈ 𝑧 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
16 | 15 | anidms 571 |
. . . . . . 7
⊢ (𝑧 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (𝑧 ∈ 𝑧 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
17 | 16 | notbid 322 |
. . . . . 6
⊢ (𝑧 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (¬ 𝑧 ∈ 𝑧 ↔ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
18 | 14, 17 | anbi12d 634 |
. . . . 5
⊢ (𝑧 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → ((𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ∈ 𝑧) ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥}))) |
19 | | df-rab 3080 |
. . . . 5
⊢ {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑦)} |
20 | 13, 18, 19 | elab2gw 3587 |
. . . 4
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ V → ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥}))) |
21 | 6, 8, 20 | pm5.21nii 384 |
. . 3
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
22 | 5, 21 | bitri 278 |
. 2
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
23 | | pclem6 1024 |
. 2
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴) |
24 | 22, 23 | ax-mp 5 |
1
⊢ ¬
{𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 |