![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rru | Structured version Visualization version GIF version |
Description: Relative version of
Russell's paradox ru 3705 (which corresponds to the
case 𝐴 = V).
Originally a subproof in pwnss 5141. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid df-nel 3091. (Revised by Steven Nguyen, 23-Nov-2022.) |
Ref | Expression |
---|---|
rru | ⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12 2872 | . . . . 5 ⊢ ((𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∧ 𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥}) → (𝑦 ∈ 𝑦 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) | |
2 | 1 | anidms 567 | . . . 4 ⊢ (𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (𝑦 ∈ 𝑦 ↔ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
3 | 2 | notbid 319 | . . 3 ⊢ (𝑦 = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} → (¬ 𝑦 ∈ 𝑦 ↔ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
4 | eleq12 2872 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
5 | 4 | anidms 567 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
6 | 5 | notbid 319 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
7 | 6 | cbvrabv 3434 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝑦} |
8 | 3, 7 | elrab2 3621 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) |
9 | pclem6 1020 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 ∧ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥})) → ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴) | |
10 | 8, 9 | ax-mp 5 | 1 ⊢ ¬ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝑥} ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 {crab 3109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 |
This theorem is referenced by: pwnss 5141 |
Copyright terms: Public domain | W3C validator |