MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnss Structured version   Visualization version   GIF version

Theorem pwnss 5267
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rru 3709 . . 3 ¬ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝐴
2 ssel 3910 . . 3 (𝒫 𝐴𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴 → {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝐴))
31, 2mtoi 198 . 2 (𝒫 𝐴𝐴 → ¬ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴)
4 ssrab2 4009 . . 3 {𝑥𝐴 ∣ ¬ 𝑥𝑥} ⊆ 𝐴
5 elpw2g 5263 . . 3 (𝐴𝑉 → ({𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴 ↔ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ⊆ 𝐴))
64, 5mpbiri 257 . 2 (𝐴𝑉 → {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴)
73, 6nsyl3 138 1 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  {crab 3067  wss 3883  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  pwne  5268  pwuninel2  8061
  Copyright terms: Public domain W3C validator