MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnss Structured version   Visualization version   GIF version

Theorem pwnss 5340
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwnss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rru 3768 . . 3 ¬ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝐴
2 ssel 3968 . . 3 (𝒫 𝐴𝐴 → ({𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴 → {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝐴))
31, 2mtoi 198 . 2 (𝒫 𝐴𝐴 → ¬ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴)
4 ssrab2 4070 . . 3 {𝑥𝐴 ∣ ¬ 𝑥𝑥} ⊆ 𝐴
5 elpw2g 5335 . . 3 (𝐴𝑉 → ({𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴 ↔ {𝑥𝐴 ∣ ¬ 𝑥𝑥} ⊆ 𝐴))
64, 5mpbiri 258 . 2 (𝐴𝑉 → {𝑥𝐴 ∣ ¬ 𝑥𝑥} ∈ 𝒫 𝐴)
73, 6nsyl3 138 1 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  {crab 3424  wss 3941  𝒫 cpw 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-in 3948  df-ss 3958  df-pw 4597
This theorem is referenced by:  pwne  5341  pwuninel2  8255
  Copyright terms: Public domain W3C validator