| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc4v | Structured version Visualization version GIF version | ||
| Description: 4-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 7-Feb-2025.) |
| Ref | Expression |
|---|---|
| rspc4v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc4v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| rspc4v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜏)) |
| rspc4v.4 | ⊢ (𝑤 = 𝐷 → (𝜏 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc4v | ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈)) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 ∀𝑤 ∈ 𝑈 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1089 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇)) | |
| 2 | rspc4v.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 3 | 2 | ralbidv 3178 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑤 ∈ 𝑈 𝜑 ↔ ∀𝑤 ∈ 𝑈 𝜒)) |
| 4 | rspc4v.2 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 5 | 4 | ralbidv 3178 | . . . . 5 ⊢ (𝑦 = 𝐵 → (∀𝑤 ∈ 𝑈 𝜒 ↔ ∀𝑤 ∈ 𝑈 𝜃)) |
| 6 | rspc4v.3 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜏)) | |
| 7 | 6 | ralbidv 3178 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑤 ∈ 𝑈 𝜃 ↔ ∀𝑤 ∈ 𝑈 𝜏)) |
| 8 | 3, 5, 7 | rspc3v 3638 | . . . 4 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 ∀𝑤 ∈ 𝑈 𝜑 → ∀𝑤 ∈ 𝑈 𝜏)) |
| 9 | rspc4v.4 | . . . . 5 ⊢ (𝑤 = 𝐷 → (𝜏 ↔ 𝜓)) | |
| 10 | 9 | rspcv 3618 | . . . 4 ⊢ (𝐷 ∈ 𝑈 → (∀𝑤 ∈ 𝑈 𝜏 → 𝜓)) |
| 11 | 8, 10 | sylan9 507 | . . 3 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝐷 ∈ 𝑈) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 ∀𝑤 ∈ 𝑈 𝜑 → 𝜓)) |
| 12 | 1, 11 | sylanbr 582 | . 2 ⊢ ((((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) ∧ 𝐷 ∈ 𝑈) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 ∀𝑤 ∈ 𝑈 𝜑 → 𝜓)) |
| 13 | 12 | anasss 466 | 1 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ (𝐶 ∈ 𝑇 ∧ 𝐷 ∈ 𝑈)) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 ∀𝑤 ∈ 𝑈 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 |
| This theorem is referenced by: rspc6v 3643 rspc8v 3644 |
| Copyright terms: Public domain | W3C validator |