![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc3v | Structured version Visualization version GIF version |
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc3v | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc3v.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
2 | 1 | ralbidv 3184 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑇 𝜑 ↔ ∀𝑧 ∈ 𝑇 𝜒)) |
3 | rspc3v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
4 | 3 | ralbidv 3184 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝑇 𝜒 ↔ ∀𝑧 ∈ 𝑇 𝜃)) |
5 | 2, 4 | rspc2v 3646 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → ∀𝑧 ∈ 𝑇 𝜃)) |
6 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
7 | 6 | rspcv 3631 | . . 3 ⊢ (𝐶 ∈ 𝑇 → (∀𝑧 ∈ 𝑇 𝜃 → 𝜓)) |
8 | 5, 7 | sylan9 507 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
9 | 8 | 3impa 1110 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: rspc3dv 3654 rspc4v 3655 pocl 5615 swopolem 5618 isopolem 7381 caovassg 7648 caovcang 7651 caovordig 7655 caovordg 7657 caovdig 7664 caovdirg 7667 caofass 7752 caoftrn 7753 frpoins3xp3g 8182 prslem 18368 posi 18387 latdisdlem 18566 dlatmjdi 18593 sgrpass 18763 gaass 19337 rngdi 20187 rngdir 20188 o2timesd 20237 rglcom4d 20238 islmodd 20886 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 lsscl 20963 assalem 21900 psmettri2 24340 xmettri2 24371 addsproplem1 28020 addsprop 28027 axtgcgrid 28489 axtg5seg 28491 axtgpasch 28493 axtgupdim2 28497 axtgeucl 28498 tgdim01 28533 f1otrgitv 28896 grpoass 30535 vcdi 30597 vcdir 30598 vcass 30599 lnolin 30786 lnopl 31946 lnfnl 31963 omndadd 33056 axtgupdim2ALTV 34645 rngodi 37864 rngodir 37865 rngoass 37866 lfli 39017 cvlexch1 39284 isthincd2lem2 48703 |
Copyright terms: Public domain | W3C validator |