MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc3v Structured version   Visualization version   GIF version

Theorem rspc3v 3621
Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1 (𝑥 = 𝐴 → (𝜑𝜒))
rspc3v.2 (𝑦 = 𝐵 → (𝜒𝜃))
rspc3v.3 (𝑧 = 𝐶 → (𝜃𝜓))
Assertion
Ref Expression
rspc3v ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Distinct variable groups:   𝜓,𝑧   𝜒,𝑥   𝜃,𝑦   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝜒(𝑦,𝑧)   𝜃(𝑥,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝑅(𝑦,𝑧)   𝑆(𝑧)

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜒))
21ralbidv 3165 . . . 4 (𝑥 = 𝐴 → (∀𝑧𝑇 𝜑 ↔ ∀𝑧𝑇 𝜒))
3 rspc3v.2 . . . . 5 (𝑦 = 𝐵 → (𝜒𝜃))
43ralbidv 3165 . . . 4 (𝑦 = 𝐵 → (∀𝑧𝑇 𝜒 ↔ ∀𝑧𝑇 𝜃))
52, 4rspc2v 3616 . . 3 ((𝐴𝑅𝐵𝑆) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑 → ∀𝑧𝑇 𝜃))
6 rspc3v.3 . . . 4 (𝑧 = 𝐶 → (𝜃𝜓))
76rspcv 3601 . . 3 (𝐶𝑇 → (∀𝑧𝑇 𝜃𝜓))
85, 7sylan9 507 . 2 (((𝐴𝑅𝐵𝑆) ∧ 𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
983impa 1109 1 ((𝐴𝑅𝐵𝑆𝐶𝑇) → (∀𝑥𝑅𝑦𝑆𝑧𝑇 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051
This theorem is referenced by:  rspc3dv  3624  rspc4v  3625  pocl  5580  swopolem  5582  isopolem  7347  caovassg  7613  caovcang  7616  caovordig  7620  caovordg  7622  caovdig  7629  caovdirg  7632  caofass  7719  caoftrn  7720  frpoins3xp3g  8148  prslem  18313  posi  18333  latdisdlem  18510  dlatmjdi  18537  sgrpass  18707  gaass  19284  rngdi  20125  rngdir  20126  o2timesd  20175  rglcom4d  20176  islmodd  20832  rmodislmodlem  20895  rmodislmod  20896  lsscl  20908  assalem  21831  psmettri2  24264  xmettri2  24295  addsproplem1  27938  addsprop  27945  axtgcgrid  28407  axtg5seg  28409  axtgpasch  28411  axtgupdim2  28415  axtgeucl  28416  tgdim01  28451  f1otrgitv  28814  grpoass  30450  vcdi  30512  vcdir  30513  vcass  30514  lnolin  30701  lnopl  31861  lnfnl  31878  omndadd  33022  axtgupdim2ALTV  34642  rngodi  37870  rngodir  37871  rngoass  37872  lfli  39021  cvlexch1  39288  isthincd2lem2  49062
  Copyright terms: Public domain W3C validator