| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc3v | Structured version Visualization version GIF version | ||
| Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
| Ref | Expression |
|---|---|
| rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc3v | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3165 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑇 𝜑 ↔ ∀𝑧 ∈ 𝑇 𝜒)) |
| 3 | rspc3v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 4 | 3 | ralbidv 3165 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝑇 𝜒 ↔ ∀𝑧 ∈ 𝑇 𝜃)) |
| 5 | 2, 4 | rspc2v 3616 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → ∀𝑧 ∈ 𝑇 𝜃)) |
| 6 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
| 7 | 6 | rspcv 3601 | . . 3 ⊢ (𝐶 ∈ 𝑇 → (∀𝑧 ∈ 𝑇 𝜃 → 𝜓)) |
| 8 | 5, 7 | sylan9 507 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 |
| This theorem is referenced by: rspc3dv 3624 rspc4v 3625 pocl 5580 swopolem 5582 isopolem 7347 caovassg 7613 caovcang 7616 caovordig 7620 caovordg 7622 caovdig 7629 caovdirg 7632 caofass 7719 caoftrn 7720 frpoins3xp3g 8148 prslem 18313 posi 18333 latdisdlem 18510 dlatmjdi 18537 sgrpass 18707 gaass 19284 rngdi 20125 rngdir 20126 o2timesd 20175 rglcom4d 20176 islmodd 20832 rmodislmodlem 20895 rmodislmod 20896 lsscl 20908 assalem 21831 psmettri2 24264 xmettri2 24295 addsproplem1 27938 addsprop 27945 axtgcgrid 28407 axtg5seg 28409 axtgpasch 28411 axtgupdim2 28415 axtgeucl 28416 tgdim01 28451 f1otrgitv 28814 grpoass 30450 vcdi 30512 vcdir 30513 vcass 30514 lnolin 30701 lnopl 31861 lnfnl 31878 omndadd 33022 axtgupdim2ALTV 34642 rngodi 37870 rngodir 37871 rngoass 37872 lfli 39021 cvlexch1 39288 isthincd2lem2 49062 |
| Copyright terms: Public domain | W3C validator |