| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc3v | Structured version Visualization version GIF version | ||
| Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
| Ref | Expression |
|---|---|
| rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc3v | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3156 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑇 𝜑 ↔ ∀𝑧 ∈ 𝑇 𝜒)) |
| 3 | rspc3v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 4 | 3 | ralbidv 3156 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝑇 𝜒 ↔ ∀𝑧 ∈ 𝑇 𝜃)) |
| 5 | 2, 4 | rspc2v 3599 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → ∀𝑧 ∈ 𝑇 𝜃)) |
| 6 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
| 7 | 6 | rspcv 3584 | . . 3 ⊢ (𝐶 ∈ 𝑇 → (∀𝑧 ∈ 𝑇 𝜃 → 𝜓)) |
| 8 | 5, 7 | sylan9 507 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc3dv 3607 rspc4v 3608 pocl 5554 swopolem 5556 isopolem 7320 caovassg 7587 caovcang 7590 caovordig 7594 caovordg 7596 caovdig 7603 caovdirg 7606 caofass 7693 caoftrn 7694 frpoins3xp3g 8120 prslem 18258 posi 18278 latdisdlem 18455 dlatmjdi 18482 sgrpass 18652 gaass 19229 rngdi 20069 rngdir 20070 o2timesd 20119 rglcom4d 20120 islmodd 20772 rmodislmodlem 20835 rmodislmod 20836 lsscl 20848 assalem 21766 psmettri2 24197 xmettri2 24228 addsproplem1 27876 addsprop 27883 axtgcgrid 28390 axtg5seg 28392 axtgpasch 28394 axtgupdim2 28398 axtgeucl 28399 tgdim01 28434 f1otrgitv 28797 grpoass 30432 vcdi 30494 vcdir 30495 vcass 30496 lnolin 30683 lnopl 31843 lnfnl 31860 omndadd 33020 axtgupdim2ALTV 34659 rngodi 37898 rngodir 37899 rngoass 37900 lfli 39054 cvlexch1 39321 isthincd2lem2 49424 |
| Copyright terms: Public domain | W3C validator |