| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc3v | Structured version Visualization version GIF version | ||
| Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
| Ref | Expression |
|---|---|
| rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc3v | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3v.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | ralbidv 3152 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑧 ∈ 𝑇 𝜑 ↔ ∀𝑧 ∈ 𝑇 𝜒)) |
| 3 | rspc3v.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 4 | 3 | ralbidv 3152 | . . . 4 ⊢ (𝑦 = 𝐵 → (∀𝑧 ∈ 𝑇 𝜒 ↔ ∀𝑧 ∈ 𝑇 𝜃)) |
| 5 | 2, 4 | rspc2v 3590 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → ∀𝑧 ∈ 𝑇 𝜃)) |
| 6 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
| 7 | 6 | rspcv 3575 | . . 3 ⊢ (𝐶 ∈ 𝑇 → (∀𝑧 ∈ 𝑇 𝜃 → 𝜓)) |
| 8 | 5, 7 | sylan9 507 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 |
| This theorem is referenced by: rspc3dv 3598 rspc4v 3599 pocl 5539 swopolem 5541 isopolem 7286 caovassg 7551 caovcang 7554 caovordig 7558 caovordg 7560 caovdig 7567 caovdirg 7570 caofass 7657 caoftrn 7658 frpoins3xp3g 8081 prslem 18221 posi 18241 latdisdlem 18420 dlatmjdi 18447 sgrpass 18617 gaass 19194 omndadd 20025 rngdi 20063 rngdir 20064 o2timesd 20113 rglcom4d 20114 islmodd 20787 rmodislmodlem 20850 rmodislmod 20851 lsscl 20863 assalem 21782 psmettri2 24213 xmettri2 24244 addsproplem1 27899 addsprop 27906 axtgcgrid 28426 axtg5seg 28428 axtgpasch 28430 axtgupdim2 28434 axtgeucl 28435 tgdim01 28470 f1otrgitv 28833 grpoass 30465 vcdi 30527 vcdir 30528 vcass 30529 lnolin 30716 lnopl 31876 lnfnl 31893 axtgupdim2ALTV 34638 rngodi 37886 rngodir 37887 rngoass 37888 lfli 39042 cvlexch1 39309 isthincd2lem2 49424 |
| Copyright terms: Public domain | W3C validator |