| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc3dv | Structured version Visualization version GIF version | ||
| Description: 3-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| rspc3dv.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| rspc3dv.2 | ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜏)) |
| rspc3dv.3 | ⊢ (𝑧 = 𝐶 → (𝜏 ↔ 𝜒)) |
| rspc3dv.4 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 𝜓) |
| rspc3dv.5 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| rspc3dv.6 | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
| rspc3dv.7 | ⊢ (𝜑 → 𝐶 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| rspc3dv | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc3dv.5 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 2 | rspc3dv.6 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
| 3 | rspc3dv.7 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐹) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹)) |
| 5 | rspc3dv.4 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 𝜓) | |
| 6 | rspc3dv.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 7 | rspc3dv.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜏)) | |
| 8 | rspc3dv.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜏 ↔ 𝜒)) | |
| 9 | 6, 7, 8 | rspc3v 3622 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐸 ∧ 𝐶 ∈ 𝐹) → (∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐸 ∀𝑧 ∈ 𝐹 𝜓 → 𝜒)) |
| 10 | 4, 5, 9 | sylc 65 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 |
| This theorem is referenced by: domnlcanb 20685 domnrcanb 20687 mulsasslem3 28125 domnlcanOLD 33279 |
| Copyright terms: Public domain | W3C validator |