![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb10f | Structured version Visualization version GIF version |
Description: Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. Usage of this theorem is discouraged because it depends on ax-13 2365. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb10f.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sb10f | ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb10f.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsb 2516 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑧]𝜑 |
3 | sbequ 2078 | . . 3 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) | |
4 | 2, 3 | equsexv 2254 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑) ↔ [𝑦 / 𝑧]𝜑) |
5 | 4 | bicomi 223 | 1 ⊢ ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∃wex 1773 Ⅎwnf 1777 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2365 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |