Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsb | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2324 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use nfsbv 2324 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
4 | 1, 3 | nfsbd 2526 | . 2 ⊢ (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
5 | 4 | mptru 1546 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: hbsb 2529 sb10f 2532 2sb8e 2535 sb8eu 2600 cbvralf 3371 cbvreu 3381 cbvralsv 3404 cbvrexsv 3405 cbvrab 3425 cbvreucsf 3879 cbvrabcsf 3880 cbvopab1g 5150 cbvmptfg 5184 cbviota 6401 sb8iota 6403 cbvriota 7246 2sb5nd 42180 |
Copyright terms: Public domain | W3C validator |