MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb Structured version   Visualization version   GIF version

Theorem nfsb 2522
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2329 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2371. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2371. Use nfsbv 2329 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
nfsb.1 𝑧𝜑
Assertion
Ref Expression
nfsb 𝑧[𝑦 / 𝑥]𝜑
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsb
StepHypRef Expression
1 nftru 1804 . . 3 𝑥
2 nfsb.1 . . . 4 𝑧𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑧𝜑)
41, 3nfsbd 2521 . 2 (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
54mptru 1547 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnf 1783  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066
This theorem is referenced by:  hbsb  2523  sb10f  2526  2sb8e  2529  sb8eu  2594  cbvralf  3336  cbvralsv  3342  cbvrexsv  3343  cbvreu  3400  cbvrab  3449  cbvreucsf  3909  cbvrabcsf  3910  cbvopab1g  5185  cbvmptfg  5211  cbviota  6476  sb8iota  6478  cbvriota  7360  2sb5nd  44557
  Copyright terms: Public domain W3C validator