| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsb | Structured version Visualization version GIF version | ||
| Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2331 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use nfsbv 2331 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
| 4 | 1, 3 | nfsbd 2522 | . 2 ⊢ (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: hbsb 2524 sb10f 2527 2sb8e 2530 sb8eu 2595 cbvralf 3326 cbvralsv 3332 cbvrexsv 3333 cbvreu 3387 cbvrab 3435 cbvreucsf 3889 cbvrabcsf 3890 cbvopab1g 5161 cbvmptfg 5187 cbviota 6441 sb8iota 6443 cbvriota 7311 2sb5nd 44593 |
| Copyright terms: Public domain | W3C validator |