MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb Structured version   Visualization version   GIF version

Theorem nfsb 2525
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2333 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2374. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use nfsbv 2333 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
nfsb.1 𝑧𝜑
Assertion
Ref Expression
nfsb 𝑧[𝑦 / 𝑥]𝜑
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsb
StepHypRef Expression
1 nftru 1805 . . 3 𝑥
2 nfsb.1 . . . 4 𝑧𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑧𝜑)
41, 3nfsbd 2524 . 2 (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
54mptru 1548 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1784  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068
This theorem is referenced by:  hbsb  2526  sb10f  2529  2sb8e  2532  sb8eu  2597  cbvralf  3327  cbvralsv  3333  cbvrexsv  3334  cbvreu  3388  cbvrab  3436  cbvreucsf  3890  cbvrabcsf  3891  cbvopab1g  5170  cbvmptfg  5196  cbviota  6454  sb8iota  6456  cbvriota  7325  2sb5nd  44717
  Copyright terms: Public domain W3C validator