MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb Structured version   Visualization version   GIF version

Theorem nfsb 2527
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2330 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2376. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2376. Use nfsbv 2330 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
nfsb.1 𝑧𝜑
Assertion
Ref Expression
nfsb 𝑧[𝑦 / 𝑥]𝜑
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsb
StepHypRef Expression
1 nftru 1804 . . 3 𝑥
2 nfsb.1 . . . 4 𝑧𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑧𝜑)
41, 3nfsbd 2526 . 2 (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
54mptru 1547 1 𝑧[𝑦 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnf 1783  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177  ax-13 2376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065
This theorem is referenced by:  hbsb  2528  sb10f  2531  2sb8e  2534  sb8eu  2599  cbvralf  3339  cbvralsv  3345  cbvrexsv  3346  cbvreu  3407  cbvrab  3458  cbvreucsf  3918  cbvrabcsf  3919  cbvopab1g  5194  cbvmptfg  5222  cbviota  6493  sb8iota  6495  cbvriota  7375  2sb5nd  44585
  Copyright terms: Public domain W3C validator