| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsb | Structured version Visualization version GIF version | ||
| Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2329 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2370. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2370. Use nfsbv 2329 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
| 4 | 1, 3 | nfsbd 2520 | . 2 ⊢ (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 5 | 4 | mptru 1547 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: hbsb 2522 sb10f 2525 2sb8e 2528 sb8eu 2593 cbvralf 3334 cbvralsv 3340 cbvrexsv 3341 cbvreu 3397 cbvrab 3446 cbvreucsf 3906 cbvrabcsf 3907 cbvopab1g 5182 cbvmptfg 5208 cbviota 6473 sb8iota 6475 cbvriota 7357 2sb5nd 44550 |
| Copyright terms: Public domain | W3C validator |