| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsb | Structured version Visualization version GIF version | ||
| Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2333 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2374. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2374. Use nfsbv 2333 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
| 4 | 1, 3 | nfsbd 2524 | . 2 ⊢ (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2146 ax-11 2162 ax-12 2182 ax-13 2374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: hbsb 2526 sb10f 2529 2sb8e 2532 sb8eu 2597 cbvralf 3327 cbvralsv 3333 cbvrexsv 3334 cbvreu 3388 cbvrab 3436 cbvreucsf 3890 cbvrabcsf 3891 cbvopab1g 5170 cbvmptfg 5196 cbviota 6454 sb8iota 6456 cbvriota 7325 2sb5nd 44717 |
| Copyright terms: Public domain | W3C validator |