Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsb | Structured version Visualization version GIF version |
Description: If 𝑧 is not free in 𝜑, then it is not free in [𝑦 / 𝑥]𝜑 when 𝑦 and 𝑧 are distinct. See nfsbv 2328 for a version with an additional disjoint variable condition on 𝑥, 𝑧 but not requiring ax-13 2372. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 25-Feb-2024.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use nfsbv 2328 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
nfsb.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfsb | ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1808 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | nfsb.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
4 | 1, 3 | nfsbd 2526 | . 2 ⊢ (⊤ → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
5 | 4 | mptru 1546 | 1 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: hbsb 2529 sb10f 2532 2sb8e 2535 sb8eu 2600 cbvralf 3361 cbvreu 3370 cbvralsv 3393 cbvrexsv 3394 cbvrab 3415 cbvreucsf 3875 cbvrabcsf 3876 cbvopab1g 5146 cbvmptfg 5180 cbviota 6386 sb8iota 6388 cbvriota 7226 2sb5nd 42069 |
Copyright terms: Public domain | W3C validator |