MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb7h Structured version   Visualization version   GIF version

Theorem sb7h 2525
Description: This version of dfsb7 2280 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1911, i.e., that does not have the concept of a variable not occurring in a formula. (Definition dfsb1 2480 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) Usage of this theorem is discouraged because it depends on ax-13 2371. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
sb7h.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sb7h ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb7h
StepHypRef Expression
1 sb7h.1 . . 3 (𝜑 → ∀𝑧𝜑)
21nf5i 2148 . 2 𝑧𝜑
32sb7f 2524 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  [wsb 2066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2143  ax-11 2159  ax-12 2179  ax-13 2371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator