Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bitr4d | Structured version Visualization version GIF version |
Description: Deduction form of bitr4i 278. (Contributed by NM, 30-Jun-1993.) |
Ref | Expression |
---|---|
bitr4d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
bitr4d.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜒)) |
Ref | Expression |
---|---|
bitr4d | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4d.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bitr4d.2 | . . 3 ⊢ (𝜑 → (𝜃 ↔ 𝜒)) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
4 | 1, 3 | bitrd 279 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Copyright terms: Public domain | W3C validator |