MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb5OLD Structured version   Visualization version   GIF version

Theorem sb5OLD 2269
Description: Obsolete version of sb5 2268 as of 21-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb5OLD ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb5OLD
StepHypRef Expression
1 nfs1v 2153 . . 3 𝑥[𝑦 / 𝑥]𝜑
2 sbequ12 2244 . . 3 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
31, 2equsexv 2260 . 2 (∃𝑥(𝑥 = 𝑦𝜑) ↔ [𝑦 / 𝑥]𝜑)
43bicomi 223 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator