| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2249 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2250 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbequ12r 2253 sbequ12a 2255 sb8ef 2353 sbbib 2359 axc16ALT 2487 nfsb4t 2497 sbco2 2509 sb8 2515 sb8e 2516 sbal1 2526 sbal2 2527 sbab 2875 cbvrexsvw 3288 cbvralsvwOLD 3289 cbvralsvwOLDOLD 3290 cbvrexsvwOLD 3291 cbvralf 3331 cbvralsv 3337 cbvrexsv 3338 cbvrabwOLD 3439 cbvrab 3443 sbhypfOLD 3508 mob2 3683 reu2 3693 reu6 3694 sbcralt 3832 sbcreu 3836 cbvrabcsfw 3900 cbvreucsf 3903 cbvrabcsf 3904 csbif 4542 cbvopab1 5176 cbvopab1g 5177 cbvopab1s 5179 cbvmptf 5202 cbvmptfg 5203 csbopab 5510 csbopabgALT 5511 opeliunxp 5698 opeliun2xp 5699 ralxpf 5800 cbviotaw 6459 cbviota 6461 csbiota 6492 f1ossf1o 7082 cbvriotaw 7335 cbvriota 7339 csbriota 7341 onminex 7758 tfis 7811 findes 7856 abrexex2g 7922 opabex3d 7923 opabex3rd 7924 opabex3 7925 dfoprab4f 8014 uzind4s 12843 ac6sf2 32521 esumcvg 34049 wl-sb8t 37513 wl-sbalnae 37523 wl-ax11-lem8 37553 sbcrexgOLD 42746 scottabes 44204 pm13.193 44373 2reu8i 47087 ichnfimlem 47437 |
| Copyright terms: Public domain | W3C validator |