Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 2243 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 2244 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 |
This theorem is referenced by: sbequ12r 2248 sbequ12a 2250 sb5OLD 2272 sb8v 2352 sb8ev 2353 sbbib 2359 axc16ALT 2493 nfsb4t 2503 sbco2 2515 sb8 2521 sb8e 2522 sbal1 2533 sbal2 2534 clelabOLD 2883 sbab 2885 nfabdwOLD 2930 cbvralfwOLD 3359 cbvralf 3361 cbvralsvw 3391 cbvrexsvw 3392 cbvralsv 3393 cbvrexsv 3394 cbvrabw 3414 cbvrab 3415 sbhypf 3481 mob2 3645 reu2 3655 reu6 3656 sbcralt 3801 sbcreu 3805 cbvrabcsfw 3872 cbvreucsf 3875 cbvrabcsf 3876 csbif 4513 cbvopab1 5145 cbvopab1g 5146 cbvopab1s 5148 cbvmptf 5179 cbvmptfg 5180 csbopab 5461 csbopabgALT 5462 opeliunxp 5645 ralxpf 5744 cbviotaw 6383 cbviota 6386 csbiota 6411 f1ossf1o 6982 cbvriotaw 7221 cbvriota 7226 csbriota 7228 onminex 7629 tfis 7676 findes 7723 abrexex2g 7780 opabex3d 7781 opabex3rd 7782 opabex3 7783 dfoprab4f 7869 uzind4s 12577 ac6sf2 30861 esumcvg 31954 wl-sb8t 35634 wl-sbalnae 35644 wl-ax11-lem8 35670 sbcrexgOLD 40523 scottabes 41749 pm13.193 41918 2reu8i 44492 ichnfimlem 44803 opeliun2xp 45556 |
Copyright terms: Public domain | W3C validator |