Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 2247 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 2248 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 215 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 [wsb 2070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-12 2176 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 |
This theorem is referenced by: sbequ12r 2252 sbequ12a 2254 sb5 2274 sb8v 2363 sb8ev 2364 sbbib 2370 axc16ALT 2508 nfsb4t 2518 sbco2 2531 sb8 2537 sb8e 2538 sbal1 2549 sbal2 2550 clelabOLD 2897 sbab 2899 nfabdw 2941 cbvralfwOLD 3349 cbvralf 3351 cbvralsvw 3380 cbvrexsvw 3381 cbvralsv 3382 cbvrexsv 3383 cbvrabw 3403 cbvrab 3404 sbhypf 3470 mob2 3630 reu2 3640 reu6 3641 sbcralt 3779 sbcreu 3783 cbvrabcsfw 3847 cbvreucsf 3850 cbvrabcsf 3851 csbif 4478 cbvopab1 5106 cbvopab1g 5107 cbvopab1s 5109 cbvmptf 5132 cbvmptfg 5133 csbopab 5413 csbopabgALT 5414 opeliunxp 5589 ralxpf 5687 cbviotaw 6302 cbviota 6304 csbiota 6329 f1ossf1o 6882 cbvriotaw 7118 cbvriota 7122 csbriota 7124 onminex 7522 tfis 7569 findes 7613 abrexex2g 7670 opabex3d 7671 opabex3rd 7672 opabex3 7673 dfoprab4f 7759 uzind4s 12341 ac6sf2 30475 esumcvg 31566 wl-sb8t 35226 wl-sbalnae 35236 wl-ax11-lem8 35262 sbcrexgOLD 40092 scottabes 41316 pm13.193 41481 2reu8i 44030 ichnfimlem 44341 opeliun2xp 45094 |
Copyright terms: Public domain | W3C validator |