![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 2249 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 2250 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: sbequ12r 2253 sbequ12a 2255 sb5OLD 2278 sb8fOLD 2360 sb8ef 2361 sbbib 2367 axc16ALT 2497 nfsb4t 2507 sbco2 2519 sb8 2525 sb8e 2526 sbal1 2536 sbal2 2537 sbab 2892 nfabdwOLD 2933 cbvrexsvw 3324 cbvralsvwOLD 3325 cbvralsvwOLDOLD 3326 cbvrexsvwOLD 3327 cbvralf 3368 cbvralsv 3374 cbvrexsv 3375 cbvrabwOLD 3482 cbvrab 3487 sbhypfOLD 3557 mob2 3737 reu2 3747 reu6 3748 sbcralt 3894 sbcreu 3898 cbvrabcsfw 3965 cbvreucsf 3968 cbvrabcsf 3969 csbif 4605 cbvopab1 5241 cbvopab1g 5242 cbvopab1s 5244 cbvmptf 5275 cbvmptfg 5276 csbopab 5574 csbopabgALT 5575 opeliunxp 5767 ralxpf 5871 cbviotaw 6532 cbviota 6535 csbiota 6566 f1ossf1o 7162 cbvriotaw 7413 cbvriota 7418 csbriota 7420 onminex 7838 tfis 7892 findes 7940 abrexex2g 8005 opabex3d 8006 opabex3rd 8007 opabex3 8008 dfoprab4f 8097 uzind4s 12973 ac6sf2 32644 esumcvg 34050 wl-sb8t 37506 wl-sbalnae 37516 wl-ax11-lem8 37546 sbcrexgOLD 42741 scottabes 44211 pm13.193 44380 2reu8i 47028 ichnfimlem 47337 opeliun2xp 48057 |
Copyright terms: Public domain | W3C validator |