![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 2228 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 2013 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 204 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-12 2163 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-sb 2012 |
This theorem is referenced by: sbequ12r 2230 sbequ12a 2231 sb8v 2321 sb8ev 2322 axc16ALT 2442 nfsb4t 2465 sbco2 2492 sb8 2501 sb8e 2502 sbal1 2539 clelab 2916 sbab 2918 cbvralf 3361 cbvralsv 3378 cbvrexsv 3379 cbvrab 3395 sbhypf 3455 mob2 3598 reu2 3606 reu6 3607 sbcralt 3728 sbcreu 3732 cbvreucsf 3785 cbvrabcsf 3786 csbif 4362 cbvopab1 4959 cbvopab1s 4961 cbvmptf 4983 cbvmpt 4984 opelopabsb 5222 csbopab 5245 csbopabgALT 5246 opeliunxp 5416 ralxpf 5514 cbviota 6104 csbiota 6128 f1ossf1o 6660 cbvriota 6893 csbriota 6895 onminex 7285 tfis 7332 findes 7374 abrexex2g 7422 opabex3d 7423 opabex3 7424 dfoprab4f 7505 uzind4s 12054 ac6sf2 29994 esumcvg 30746 bj-sbab 33361 wl-sb8t 33928 wl-sbalnae 33939 wl-ax11-lem8 33963 sbcrexgOLD 38309 pm13.193 39567 2reu8i 42154 opeliun2xp 43126 |
Copyright terms: Public domain | W3C validator |