![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 2246 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 2247 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsb 2062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 |
This theorem is referenced by: sbequ12r 2250 sbequ12a 2252 sb8fOLD 2355 sb8ef 2356 sbbib 2362 axc16ALT 2492 nfsb4t 2502 sbco2 2514 sb8 2520 sb8e 2521 sbal1 2531 sbal2 2532 sbab 2887 cbvrexsvw 3316 cbvralsvwOLD 3317 cbvralsvwOLDOLD 3318 cbvrexsvwOLD 3319 cbvralf 3358 cbvralsv 3364 cbvrexsv 3365 cbvrabwOLD 3472 cbvrab 3477 sbhypfOLD 3545 mob2 3724 reu2 3734 reu6 3735 sbcralt 3881 sbcreu 3885 cbvrabcsfw 3952 cbvreucsf 3955 cbvrabcsf 3956 csbif 4588 cbvopab1 5223 cbvopab1g 5224 cbvopab1s 5226 cbvmptf 5257 cbvmptfg 5258 csbopab 5565 csbopabgALT 5566 opeliunxp 5756 ralxpf 5860 cbviotaw 6523 cbviota 6525 csbiota 6556 f1ossf1o 7148 cbvriotaw 7397 cbvriota 7401 csbriota 7403 onminex 7822 tfis 7876 findes 7923 abrexex2g 7988 opabex3d 7989 opabex3rd 7990 opabex3 7991 dfoprab4f 8080 uzind4s 12948 ac6sf2 32642 esumcvg 34067 wl-sb8t 37533 wl-sbalnae 37543 wl-ax11-lem8 37573 sbcrexgOLD 42773 scottabes 44238 pm13.193 44407 2reu8i 47063 ichnfimlem 47388 opeliun2xp 48178 |
Copyright terms: Public domain | W3C validator |