| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2253 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2254 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbequ12r 2257 sbequ12a 2259 sb8ef 2357 sbbib 2363 axc16ALT 2491 nfsb4t 2501 sbco2 2513 sb8 2519 sb8e 2520 sbal1 2530 sbal2 2531 sbab 2879 cbvrexsvw 3285 cbvralsvwOLD 3286 cbvralsvwOLDOLD 3287 cbvrexsvwOLD 3288 cbvralf 3327 cbvralsv 3333 cbvrexsv 3334 cbvrabwOLD 3432 cbvrab 3436 mob2 3670 reu2 3680 reu6 3681 sbcralt 3819 sbcreu 3823 cbvrabcsfw 3887 cbvreucsf 3890 cbvrabcsf 3891 csbif 4534 cbvopab1 5169 cbvopab1g 5170 cbvopab1s 5172 cbvmptf 5195 cbvmptfg 5196 csbopab 5500 csbopabgALT 5501 opeliunxp 5688 opeliun2xp 5689 ralxpf 5792 cbviotaw 6452 cbviota 6454 csbiota 6482 f1ossf1o 7070 cbvriotaw 7321 cbvriota 7325 csbriota 7327 onminex 7744 tfis 7794 findes 7839 abrexex2g 7905 opabex3d 7906 opabex3rd 7907 opabex3 7908 dfoprab4f 7997 uzind4s 12812 ac6sf2 32626 esumcvg 34171 wl-sb8t 37669 wl-sbalnae 37679 sbcrexgOLD 42942 scottabes 44399 pm13.193 44568 2reu8i 47275 ichnfimlem 47625 |
| Copyright terms: Public domain | W3C validator |