| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2249 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2250 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbequ12r 2253 sbequ12a 2255 sb8ef 2353 sbbib 2359 axc16ALT 2487 nfsb4t 2497 sbco2 2509 sb8 2515 sb8e 2516 sbal1 2526 sbal2 2527 sbab 2875 cbvrexsvw 3291 cbvralsvwOLD 3292 cbvralsvwOLDOLD 3293 cbvrexsvwOLD 3294 cbvralf 3334 cbvralsv 3340 cbvrexsv 3341 cbvrabwOLD 3442 cbvrab 3446 sbhypfOLD 3511 mob2 3686 reu2 3696 reu6 3697 sbcralt 3835 sbcreu 3839 cbvrabcsfw 3903 cbvreucsf 3906 cbvrabcsf 3907 csbif 4546 cbvopab1 5181 cbvopab1g 5182 cbvopab1s 5184 cbvmptf 5207 cbvmptfg 5208 csbopab 5515 csbopabgALT 5516 opeliunxp 5705 opeliun2xp 5706 ralxpf 5810 cbviotaw 6471 cbviota 6473 csbiota 6504 f1ossf1o 7100 cbvriotaw 7353 cbvriota 7357 csbriota 7359 onminex 7778 tfis 7831 findes 7876 abrexex2g 7943 opabex3d 7944 opabex3rd 7945 opabex3 7946 dfoprab4f 8035 uzind4s 12867 ac6sf2 32548 esumcvg 34076 wl-sb8t 37540 wl-sbalnae 37550 wl-ax11-lem8 37580 sbcrexgOLD 42773 scottabes 44231 pm13.193 44400 2reu8i 47114 ichnfimlem 47464 |
| Copyright terms: Public domain | W3C validator |