Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version |
Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ1 2241 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
2 | sbequ2 2242 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
3 | 1, 2 | impbid 211 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 |
This theorem is referenced by: sbequ12r 2246 sbequ12a 2248 sb5OLD 2270 sb8fOLD 2353 sb8ef 2354 sbbib 2360 axc16ALT 2494 nfsb4t 2504 sbco2 2516 sb8 2522 sb8e 2523 sbal1 2534 sbal2 2535 clelabOLD 2885 sbab 2887 nfabdwOLD 2932 cbvralfwOLD 3370 cbvralf 3372 cbvralsvw 3403 cbvrexsvw 3404 cbvralsv 3405 cbvrexsv 3406 cbvrabw 3425 cbvrab 3426 sbhypf 3492 mob2 3651 reu2 3661 reu6 3662 sbcralt 3806 sbcreu 3810 cbvrabcsfw 3877 cbvreucsf 3880 cbvrabcsf 3881 csbif 4517 cbvopab1 5150 cbvopab1g 5151 cbvopab1s 5153 cbvmptf 5184 cbvmptfg 5185 csbopab 5469 csbopabgALT 5470 opeliunxp 5655 ralxpf 5758 cbviotaw 6402 cbviota 6405 csbiota 6430 f1ossf1o 7009 cbvriotaw 7250 cbvriota 7255 csbriota 7257 onminex 7661 tfis 7710 findes 7758 abrexex2g 7816 opabex3d 7817 opabex3rd 7818 opabex3 7819 dfoprab4f 7905 uzind4s 12657 ac6sf2 30969 esumcvg 32063 wl-sb8t 35716 wl-sbalnae 35726 wl-ax11-lem8 35752 sbcrexgOLD 40614 scottabes 41867 pm13.193 42036 2reu8i 44616 ichnfimlem 44926 opeliun2xp 45679 |
Copyright terms: Public domain | W3C validator |