| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2248 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2249 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 |
| This theorem is referenced by: sbequ12r 2252 sbequ12a 2254 sb8fOLD 2356 sb8ef 2357 sbbib 2363 axc16ALT 2493 nfsb4t 2503 sbco2 2515 sb8 2521 sb8e 2522 sbal1 2532 sbal2 2533 sbab 2882 cbvrexsvw 3297 cbvralsvwOLD 3298 cbvralsvwOLDOLD 3299 cbvrexsvwOLD 3300 cbvralf 3339 cbvralsv 3345 cbvrexsv 3346 cbvrabwOLD 3453 cbvrab 3458 sbhypfOLD 3524 mob2 3698 reu2 3708 reu6 3709 sbcralt 3847 sbcreu 3851 cbvrabcsfw 3915 cbvreucsf 3918 cbvrabcsf 3919 csbif 4558 cbvopab1 5193 cbvopab1g 5194 cbvopab1s 5196 cbvmptf 5221 cbvmptfg 5222 csbopab 5530 csbopabgALT 5531 opeliunxp 5721 opeliun2xp 5722 ralxpf 5826 cbviotaw 6491 cbviota 6493 csbiota 6524 f1ossf1o 7118 cbvriotaw 7371 cbvriota 7375 csbriota 7377 onminex 7796 tfis 7850 findes 7896 abrexex2g 7963 opabex3d 7964 opabex3rd 7965 opabex3 7966 dfoprab4f 8055 uzind4s 12924 ac6sf2 32602 esumcvg 34117 wl-sb8t 37570 wl-sbalnae 37580 wl-ax11-lem8 37610 sbcrexgOLD 42808 scottabes 44266 pm13.193 44435 2reu8i 47142 ichnfimlem 47477 |
| Copyright terms: Public domain | W3C validator |