| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2249 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2250 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbequ12r 2253 sbequ12a 2255 sb8ef 2353 sbbib 2359 axc16ALT 2487 nfsb4t 2497 sbco2 2509 sb8 2515 sb8e 2516 sbal1 2526 sbal2 2527 sbab 2875 cbvrexsvw 3282 cbvralsvwOLD 3283 cbvralsvwOLDOLD 3284 cbvrexsvwOLD 3285 cbvralf 3325 cbvralsv 3331 cbvrexsv 3332 cbvrabwOLD 3433 cbvrab 3437 sbhypfOLD 3502 mob2 3677 reu2 3687 reu6 3688 sbcralt 3826 sbcreu 3830 cbvrabcsfw 3894 cbvreucsf 3897 cbvrabcsf 3898 csbif 4536 cbvopab1 5169 cbvopab1g 5170 cbvopab1s 5172 cbvmptf 5195 cbvmptfg 5196 csbopab 5502 csbopabgALT 5503 opeliunxp 5690 opeliun2xp 5691 ralxpf 5793 cbviotaw 6449 cbviota 6451 csbiota 6479 f1ossf1o 7066 cbvriotaw 7319 cbvriota 7323 csbriota 7325 onminex 7742 tfis 7795 findes 7840 abrexex2g 7906 opabex3d 7907 opabex3rd 7908 opabex3 7909 dfoprab4f 7998 uzind4s 12827 ac6sf2 32581 esumcvg 34055 wl-sb8t 37528 wl-sbalnae 37538 wl-ax11-lem8 37568 sbcrexgOLD 42761 scottabes 44218 pm13.193 44387 2reu8i 47101 ichnfimlem 47451 |
| Copyright terms: Public domain | W3C validator |