| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2249 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2250 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbequ12r 2253 sbequ12a 2255 sb8fOLD 2353 sb8ef 2354 sbbib 2360 axc16ALT 2488 nfsb4t 2498 sbco2 2510 sb8 2516 sb8e 2517 sbal1 2527 sbal2 2528 sbab 2876 cbvrexsvw 3293 cbvralsvwOLD 3294 cbvralsvwOLDOLD 3295 cbvrexsvwOLD 3296 cbvralf 3336 cbvralsv 3342 cbvrexsv 3343 cbvrabwOLD 3445 cbvrab 3449 sbhypfOLD 3514 mob2 3689 reu2 3699 reu6 3700 sbcralt 3838 sbcreu 3842 cbvrabcsfw 3906 cbvreucsf 3909 cbvrabcsf 3910 csbif 4549 cbvopab1 5184 cbvopab1g 5185 cbvopab1s 5187 cbvmptf 5210 cbvmptfg 5211 csbopab 5518 csbopabgALT 5519 opeliunxp 5708 opeliun2xp 5709 ralxpf 5813 cbviotaw 6474 cbviota 6476 csbiota 6507 f1ossf1o 7103 cbvriotaw 7356 cbvriota 7360 csbriota 7362 onminex 7781 tfis 7834 findes 7879 abrexex2g 7946 opabex3d 7947 opabex3rd 7948 opabex3 7949 dfoprab4f 8038 uzind4s 12874 ac6sf2 32555 esumcvg 34083 wl-sb8t 37547 wl-sbalnae 37557 wl-ax11-lem8 37587 sbcrexgOLD 42780 scottabes 44238 pm13.193 44407 2reu8i 47118 ichnfimlem 47468 |
| Copyright terms: Public domain | W3C validator |