| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbequ12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbequ12 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ1 2251 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 2 | sbequ2 2252 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → 𝜑)) | |
| 3 | 1, 2 | impbid 212 | 1 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: sbequ12r 2255 sbequ12a 2257 sb8ef 2355 sbbib 2361 axc16ALT 2489 nfsb4t 2499 sbco2 2511 sb8 2517 sb8e 2518 sbal1 2528 sbal2 2529 sbab 2878 cbvrexsvw 3284 cbvralsvwOLD 3285 cbvralsvwOLDOLD 3286 cbvrexsvwOLD 3287 cbvralf 3326 cbvralsv 3332 cbvrexsv 3333 cbvrabwOLD 3431 cbvrab 3435 mob2 3669 reu2 3679 reu6 3680 sbcralt 3818 sbcreu 3822 cbvrabcsfw 3886 cbvreucsf 3889 cbvrabcsf 3890 csbif 4528 cbvopab1 5160 cbvopab1g 5161 cbvopab1s 5163 cbvmptf 5186 cbvmptfg 5187 csbopab 5490 csbopabgALT 5491 opeliunxp 5678 opeliun2xp 5679 ralxpf 5781 cbviotaw 6439 cbviota 6441 csbiota 6469 f1ossf1o 7056 cbvriotaw 7307 cbvriota 7311 csbriota 7313 onminex 7730 tfis 7780 findes 7825 abrexex2g 7891 opabex3d 7892 opabex3rd 7893 opabex3 7894 dfoprab4f 7983 uzind4s 12801 ac6sf2 32597 esumcvg 34091 wl-sb8t 37586 wl-sbalnae 37596 wl-ax11-lem8 37626 sbcrexgOLD 42818 scottabes 44275 pm13.193 44444 2reu8i 47144 ichnfimlem 47494 |
| Copyright terms: Public domain | W3C validator |