MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb56OLD Structured version   Visualization version   GIF version

Theorem sb56OLD 2279
Description: Obsolete version of sbalex 2243 as of 21-Sep-2024. Two equivalent ways of expressing the proper substitution of 𝑦 for 𝑥 in 𝜑, when 𝑥 and 𝑦 are distinct, namely, alternate definitions sb5 2277 and sb6 2085. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 2065. The implication "to the left" is equs4 2424 and does not require any disjoint variable condition (but the version with a disjoint variable condition, equs4v 1999, requires fewer axioms). Theorem equs45f 2467 replaces the disjoint variable condition with a nonfreeness hypothesis and equs5 2468 replaces it with a distinctor as antecedent. (Contributed by NM, 14-Apr-2008.) Revised to use equsexv 2269 in place of equsex 2426 in order to remove dependency on ax-13 2380. (Revised by BJ, 20-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sb56OLD (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb56OLD
StepHypRef Expression
1 sb5 2277 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
2 sb6 2085 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
31, 2bitr3i 277 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  wex 1777  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator