MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbab Structured version   Visualization version   GIF version

Theorem sbab 2887
Description: The right-hand side of the second equality is a way of representing proper substitution of 𝑦 for 𝑥 into a class variable. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
sbab (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Distinct variable groups:   𝑧,𝐴   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem sbab
StepHypRef Expression
1 sbequ12 2249 . 2 (𝑥 = 𝑦 → (𝑧𝐴 ↔ [𝑦 / 𝑥]𝑧𝐴))
21eqabdv 2873 1 (𝑥 = 𝑦𝐴 = {𝑧 ∣ [𝑦 / 𝑥]𝑧𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  [wsb 2062  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814
This theorem is referenced by:  sbcel12  4417  sbceqg  4418
  Copyright terms: Public domain W3C validator