| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 2 | 1 | sbbidv 2080 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
| 3 | clelsb1 2855 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 5 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 7 | 6 | eqrdv 2727 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqabcdv 2862 eqabi 2863 sbab 2875 rabeqcda 3414 iftrue 4490 iffalse 4493 dfopif 4830 iniseg 6057 setlikespec 6286 fncnvima2 7015 isoini 7295 dftpos3 8200 elecreseq 8697 mapsnd 8836 hartogslem1 9471 r1val2 9766 cardval2 9920 dfac3 10050 wrdval 14457 wrdnval 14486 submgmacs 18620 submacs 18730 ablsimpgfind 20018 dfrhm2 20359 lsppr 20976 rspsn 21219 znunithash 21450 tgval3 22826 txrest 23494 xkoptsub 23517 cnextf 23929 cnblcld 24638 shft2rab 25385 sca2rab 25389 renegscl 28325 grpoinvf 30434 elpjrn 32092 ofrn2 32537 ellcsrspsn 35601 neibastop3 36323 lkrval2 39056 lshpset2N 39085 hdmapoc 41898 |
| Copyright terms: Public domain | W3C validator |