![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabdv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2152. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | sbbidv 2080 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
3 | clelsb1 2858 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
4 | 3 | bicomi 223 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
5 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3bitr4g 313 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | eqrdv 2728 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2065 ∈ wcel 2104 {cab 2707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: eqabcdv 2866 eqabi 2867 sbab 2880 rabeqcda 3441 iftrue 4533 iffalse 4536 dfopif 4869 iniseg 6095 setlikespec 6325 fncnvima2 7061 isoini 7337 dftpos3 8231 mapsnd 8882 hartogslem1 9539 r1val2 9834 cardval2 9988 dfac3 10118 wrdval 14471 wrdnval 14499 submgmacs 18642 submacs 18744 ablsimpgfind 20021 dfrhm2 20365 lsppr 20848 rspsn 21092 znunithash 21339 tgval3 22686 txrest 23355 xkoptsub 23378 cnextf 23790 cnblcld 24511 shft2rab 25257 sca2rab 25261 grpoinvf 30052 elpjrn 31710 ofrn2 32132 neibastop3 35550 ecres2 37450 lkrval2 38263 lshpset2N 38292 hdmapoc 41105 |
Copyright terms: Public domain | W3C validator |