MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabdv Structured version   Visualization version   GIF version

Theorem eqabdv 2861
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.)
Hypothesis
Ref Expression
eqabdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
eqabdv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqabdv.1 . . . 4 (𝜑 → (𝑥𝐴𝜓))
21sbbidv 2080 . . 3 (𝜑 → ([𝑦 / 𝑥]𝑥𝐴 ↔ [𝑦 / 𝑥]𝜓))
3 clelsb1 2855 . . . 4 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
43bicomi 224 . . 3 (𝑦𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
5 df-clab 2708 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
62, 4, 53bitr4g 314 . 2 (𝜑 → (𝑦𝐴𝑦 ∈ {𝑥𝜓}))
76eqrdv 2727 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsb 2065  wcel 2109  {cab 2707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803
This theorem is referenced by:  eqabcdv  2862  eqabi  2863  sbab  2875  rabeqcda  3408  iftrue  4484  iffalse  4487  dfopif  4824  iniseg  6052  setlikespec  6277  fncnvima2  6999  isoini  7279  dftpos3  8184  elecreseq  8681  mapsnd  8820  hartogslem1  9453  r1val2  9752  cardval2  9906  dfac3  10034  wrdval  14442  wrdnval  14471  submgmacs  18610  submacs  18720  ablsimpgfind  20010  dfrhm2  20378  lsppr  21016  rspsn  21259  znunithash  21490  tgval3  22867  txrest  23535  xkoptsub  23558  cnextf  23970  cnblcld  24679  shft2rab  25426  sca2rab  25430  renegscl  28386  grpoinvf  30495  elpjrn  32153  ofrn2  32602  ellcsrspsn  35633  neibastop3  36355  lkrval2  39088  lshpset2N  39117  hdmapoc  41930
  Copyright terms: Public domain W3C validator