| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2160. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 2 | 1 | sbbidv 2082 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
| 3 | clelsb1 2858 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 5 | df-clab 2710 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 7 | 6 | eqrdv 2729 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: eqabcdv 2865 eqabi 2866 sbab 2878 rabeqcda 3406 iftrue 4476 iffalse 4479 dfopif 4817 iniseg 6041 setlikespec 6267 fncnvima2 6989 isoini 7267 dftpos3 8169 elecreseq 8666 mapsnd 8805 hartogslem1 9423 r1val2 9725 cardval2 9879 dfac3 10007 wrdval 14418 wrdnval 14447 submgmacs 18620 submacs 18730 ablsimpgfind 20019 dfrhm2 20387 lsppr 21022 rspsn 21265 znunithash 21496 tgval3 22873 txrest 23541 xkoptsub 23564 cnextf 23976 cnblcld 24684 shft2rab 25431 sca2rab 25435 renegscl 28395 grpoinvf 30504 elpjrn 32162 ofrn2 32614 ellcsrspsn 35677 neibastop3 36396 lkrval2 39129 lshpset2N 39158 hdmapoc 41970 |
| Copyright terms: Public domain | W3C validator |