| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 2 | 1 | sbbidv 2080 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
| 3 | clelsb1 2855 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 5 | df-clab 2708 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 7 | 6 | eqrdv 2727 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eqabcdv 2862 eqabi 2863 sbab 2875 rabeqcda 3417 iftrue 4494 iffalse 4497 dfopif 4834 iniseg 6068 setlikespec 6298 fncnvima2 7033 isoini 7313 dftpos3 8223 elecreseq 8720 mapsnd 8859 hartogslem1 9495 r1val2 9790 cardval2 9944 dfac3 10074 wrdval 14481 wrdnval 14510 submgmacs 18644 submacs 18754 ablsimpgfind 20042 dfrhm2 20383 lsppr 21000 rspsn 21243 znunithash 21474 tgval3 22850 txrest 23518 xkoptsub 23541 cnextf 23953 cnblcld 24662 shft2rab 25409 sca2rab 25413 renegscl 28349 grpoinvf 30461 elpjrn 32119 ofrn2 32564 ellcsrspsn 35628 neibastop3 36350 lkrval2 39083 lshpset2N 39112 hdmapoc 41925 |
| Copyright terms: Public domain | W3C validator |