![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabdv | Structured version Visualization version GIF version |
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.) |
Ref | Expression |
---|---|
eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
2 | 1 | sbbidv 2079 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
3 | clelsb1 2871 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
4 | 3 | bicomi 224 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
5 | df-clab 2718 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
7 | 6 | eqrdv 2738 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eqabcdv 2879 eqabi 2880 sbab 2892 rabeqcda 3455 iftrue 4554 iffalse 4557 dfopif 4894 iniseg 6127 setlikespec 6357 fncnvima2 7094 isoini 7374 dftpos3 8285 mapsnd 8944 hartogslem1 9611 r1val2 9906 cardval2 10060 dfac3 10190 wrdval 14565 wrdnval 14593 submgmacs 18755 submacs 18862 ablsimpgfind 20154 dfrhm2 20500 lsppr 21115 rspsn 21366 znunithash 21606 tgval3 22991 txrest 23660 xkoptsub 23683 cnextf 24095 cnblcld 24816 shft2rab 25562 sca2rab 25566 renegscl 28448 grpoinvf 30564 elpjrn 32222 ofrn2 32659 ellcsrspsn 35609 neibastop3 36328 ecres2 38235 lkrval2 39046 lshpset2N 39075 hdmapoc 41888 |
Copyright terms: Public domain | W3C validator |