MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabdv Structured version   Visualization version   GIF version

Theorem eqabdv 2869
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2158. (Revised by Wolf Lammen, 6-May-2023.)
Hypothesis
Ref Expression
eqabdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
eqabdv (𝜑𝐴 = {𝑥𝜓})
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem eqabdv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqabdv.1 . . . 4 (𝜑 → (𝑥𝐴𝜓))
21sbbidv 2080 . . 3 (𝜑 → ([𝑦 / 𝑥]𝑥𝐴 ↔ [𝑦 / 𝑥]𝜓))
3 clelsb1 2862 . . . 4 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
43bicomi 224 . . 3 (𝑦𝐴 ↔ [𝑦 / 𝑥]𝑥𝐴)
5 df-clab 2715 . . 3 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
62, 4, 53bitr4g 314 . 2 (𝜑 → (𝑦𝐴𝑦 ∈ {𝑥𝜓}))
76eqrdv 2734 1 (𝜑𝐴 = {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsb 2065  wcel 2109  {cab 2714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810
This theorem is referenced by:  eqabcdv  2870  eqabi  2871  sbab  2883  rabeqcda  3432  iftrue  4511  iffalse  4514  dfopif  4851  iniseg  6089  setlikespec  6319  fncnvima2  7056  isoini  7336  dftpos3  8248  mapsnd  8905  hartogslem1  9561  r1val2  9856  cardval2  10010  dfac3  10140  wrdval  14539  wrdnval  14568  submgmacs  18700  submacs  18810  ablsimpgfind  20098  dfrhm2  20439  lsppr  21056  rspsn  21299  znunithash  21530  tgval3  22906  txrest  23574  xkoptsub  23597  cnextf  24009  cnblcld  24718  shft2rab  25466  sca2rab  25470  renegscl  28406  grpoinvf  30518  elpjrn  32176  ofrn2  32623  ellcsrspsn  35668  neibastop3  36385  ecres2  38302  lkrval2  39113  lshpset2N  39142  hdmapoc  41955
  Copyright terms: Public domain W3C validator