| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabdv | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) Avoid ax-11 2162. (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqabdv | ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝜓)) | |
| 2 | 1 | sbbidv 2084 | . . 3 ⊢ (𝜑 → ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝜓)) |
| 3 | clelsb1 2860 | . . . 4 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 4 | 3 | bicomi 224 | . . 3 ⊢ (𝑦 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) |
| 5 | df-clab 2712 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 6 | 2, 4, 5 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜓})) |
| 7 | 6 | eqrdv 2731 | 1 ⊢ (𝜑 → 𝐴 = {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2113 {cab 2711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: eqabcdv 2867 eqabi 2868 sbab 2879 rabeqcda 3407 iftrue 4482 iffalse 4485 dfopif 4823 iniseg 6053 setlikespec 6280 fncnvima2 7003 isoini 7281 dftpos3 8183 elecreseq 8680 mapsnd 8820 hartogslem1 9439 r1val2 9741 cardval2 9895 dfac3 10023 wrdval 14430 wrdnval 14459 submgmacs 18633 submacs 18743 ablsimpgfind 20032 dfrhm2 20401 lsppr 21036 rspsn 21279 znunithash 21510 tgval3 22898 txrest 23566 xkoptsub 23589 cnextf 24001 cnblcld 24709 shft2rab 25456 sca2rab 25460 renegscl 28420 grpoinvf 30533 elpjrn 32191 ofrn2 32644 ellcsrspsn 35757 neibastop3 36478 ec1cnvres 38381 ecun 38490 lkrval2 39262 lshpset2N 39291 hdmapoc 42103 |
| Copyright terms: Public domain | W3C validator |