MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqg Structured version   Visualization version   GIF version

Theorem sbceqg 4387
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem sbceqg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3768 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
2 dfsbcq2 3768 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2801 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3768 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2801 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eqeq12d 2751 . . 3 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2156 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2904 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2156 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2904 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfeq 2912 . . . 4 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2882 . . . . 5 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2882 . . . . 5 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eqeq12d 2751 . . . 4 (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbiev 2314 . . 3 ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3536 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3875 . . 3 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3875 . . 3 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eqeq12i 2753 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19bitr4di 289 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  [wsb 2064  wcel 2108  {cab 2713  [wsbc 3765  csb 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-sbc 3766  df-csb 3875
This theorem is referenced by:  sbceqi  4388  sbcne12  4390  sbceq1g  4392  sbceq2g  4394  csbie2df  4418  sbcfng  6703  csbfrecsg  8283  swrdspsleq  14683  fprodmodd  16013  relowlpssretop  37382  rdgeqoa  37388  poimirlem25  37669  cdlemk42  40960  minregex  43558  onfrALTlem5  44567  onfrALTlem4  44568  csbingVD  44908  onfrALTlem5VD  44909  onfrALTlem4VD  44910  csbeq2gVD  44916  csbsngVD  44917  csbunigVD  44922  csbfv12gALTVD  44923
  Copyright terms: Public domain W3C validator