MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqg Structured version   Visualization version   GIF version

Theorem sbceqg 4417
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem sbceqg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3793 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
2 dfsbcq2 3793 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2805 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3793 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2805 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eqeq12d 2750 . . 3 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2153 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2908 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2153 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2908 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfeq 2916 . . . 4 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2886 . . . . 5 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2886 . . . . 5 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eqeq12d 2750 . . . 4 (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbiev 2312 . . 3 ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3556 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3908 . . 3 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3908 . . 3 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eqeq12i 2752 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19bitr4di 289 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  [wsb 2061  wcel 2105  {cab 2711  [wsbc 3790  csb 3907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-sbc 3791  df-csb 3908
This theorem is referenced by:  sbceqi  4418  sbcne12  4420  sbceq1g  4422  sbceq2g  4424  csbie2df  4448  sbcfng  6733  csbfrecsg  8307  swrdspsleq  14699  fprodmodd  16029  relowlpssretop  37346  rdgeqoa  37352  poimirlem25  37631  cdlemk42  40923  minregex  43523  onfrALTlem5  44539  onfrALTlem4  44540  csbingVD  44881  onfrALTlem5VD  44882  onfrALTlem4VD  44883  csbeq2gVD  44889  csbsngVD  44890  csbunigVD  44895  csbfv12gALTVD  44896
  Copyright terms: Public domain W3C validator