| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqg | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbceqg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3739 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶)) | |
| 2 | dfsbcq2 3739 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) | |
| 3 | 2 | abbidv 2797 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 4 | dfsbcq2 3739 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | |
| 5 | 4 | abbidv 2797 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 6 | 3, 5 | eqeq12d 2747 | . . 3 ⊢ (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
| 7 | nfs1v 2159 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐵 | |
| 8 | 7 | nfab 2900 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} |
| 9 | nfs1v 2159 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐶 | |
| 10 | 9 | nfab 2900 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
| 11 | 8, 10 | nfeq 2908 | . . . 4 ⊢ Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
| 12 | sbab 2878 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵}) | |
| 13 | sbab 2878 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) | |
| 14 | 12, 13 | eqeq12d 2747 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶})) |
| 15 | 11, 14 | sbiev 2315 | . . 3 ⊢ ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) |
| 16 | 1, 6, 15 | vtoclbg 3510 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
| 17 | df-csb 3846 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 18 | df-csb 3846 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 19 | 17, 18 | eqeq12i 2749 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 20 | 16, 19 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2111 {cab 2709 [wsbc 3736 ⦋csb 3845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-sbc 3737 df-csb 3846 |
| This theorem is referenced by: sbceqi 4360 sbcne12 4362 sbceq1g 4364 sbceq2g 4366 csbie2df 4390 sbcfng 6648 csbfrecsg 8214 swrdspsleq 14573 fprodmodd 15904 relowlpssretop 37408 rdgeqoa 37414 poimirlem25 37684 cdlemk42 41039 minregex 43626 onfrALTlem5 44634 onfrALTlem4 44635 csbingVD 44975 onfrALTlem5VD 44976 onfrALTlem4VD 44977 csbeq2gVD 44983 csbsngVD 44984 csbunigVD 44989 csbfv12gALTVD 44990 |
| Copyright terms: Public domain | W3C validator |