MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqg Structured version   Visualization version   GIF version

Theorem sbceqg 4343
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem sbceqg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3719 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
2 dfsbcq2 3719 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2807 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3719 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2807 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eqeq12d 2754 . . 3 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2153 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2913 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2153 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2913 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfeq 2920 . . . 4 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2886 . . . . 5 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2886 . . . . 5 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eqeq12d 2754 . . . 4 (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbiev 2309 . . 3 ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3507 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3833 . . 3 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3833 . . 3 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eqeq12i 2756 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19bitr4di 289 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  [wsb 2067  wcel 2106  {cab 2715  [wsbc 3716  csb 3832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-sbc 3717  df-csb 3833
This theorem is referenced by:  sbceqi  4344  sbcne12  4346  sbceq1g  4348  sbceq2g  4350  csbie2df  4374  sbcfng  6597  csbfrecsg  8100  swrdspsleq  14378  fprodmodd  15707  relowlpssretop  35535  rdgeqoa  35541  poimirlem25  35802  cdlemk42  38955  minregex  41141  onfrALTlem5  42162  onfrALTlem4  42163  csbingVD  42504  onfrALTlem5VD  42505  onfrALTlem4VD  42506  csbeq2gVD  42512  csbsngVD  42513  csbunigVD  42518  csbfv12gALTVD  42519
  Copyright terms: Public domain W3C validator