MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqg Structured version   Visualization version   GIF version

Theorem sbceqg 4359
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbceqg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

Proof of Theorem sbceqg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3739 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶[𝐴 / 𝑥]𝐵 = 𝐶))
2 dfsbcq2 3739 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2797 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3739 . . . . 5 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2797 . . . 4 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eqeq12d 2747 . . 3 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2159 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2900 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2159 . . . . . 6 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2900 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfeq 2908 . . . 4 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2878 . . . . 5 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2878 . . . . 5 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eqeq12d 2747 . . . 4 (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbiev 2315 . . 3 ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3510 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3846 . . 3 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3846 . . 3 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eqeq12i 2749 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19bitr4di 289 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  [wsb 2067  wcel 2111  {cab 2709  [wsbc 3736  csb 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-sbc 3737  df-csb 3846
This theorem is referenced by:  sbceqi  4360  sbcne12  4362  sbceq1g  4364  sbceq2g  4366  csbie2df  4390  sbcfng  6648  csbfrecsg  8214  swrdspsleq  14573  fprodmodd  15904  relowlpssretop  37408  rdgeqoa  37414  poimirlem25  37684  cdlemk42  41039  minregex  43626  onfrALTlem5  44634  onfrALTlem4  44635  csbingVD  44975  onfrALTlem5VD  44976  onfrALTlem4VD  44977  csbeq2gVD  44983  csbsngVD  44984  csbunigVD  44989  csbfv12gALTVD  44990
  Copyright terms: Public domain W3C validator