![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbceqg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 3807 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ [𝐴 / 𝑥]𝐵 = 𝐶)) | |
2 | dfsbcq2 3807 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) | |
3 | 2 | abbidv 2811 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
4 | dfsbcq2 3807 | . . . . 5 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | |
5 | 4 | abbidv 2811 | . . . 4 ⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
6 | 3, 5 | eqeq12d 2756 | . . 3 ⊢ (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
7 | nfs1v 2157 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐵 | |
8 | 7 | nfab 2914 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} |
9 | nfs1v 2157 | . . . . . 6 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐶 | |
10 | 9 | nfab 2914 | . . . . 5 ⊢ Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
11 | 8, 10 | nfeq 2922 | . . . 4 ⊢ Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
12 | sbab 2892 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵}) | |
13 | sbab 2892 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) | |
14 | 12, 13 | eqeq12d 2756 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶})) |
15 | 11, 14 | sbiev 2318 | . . 3 ⊢ ([𝑧 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) |
16 | 1, 6, 15 | vtoclbg 3569 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
17 | df-csb 3922 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
18 | df-csb 3922 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
19 | 17, 18 | eqeq12i 2758 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
20 | 16, 19 | bitr4di 289 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-sbc 3805 df-csb 3922 |
This theorem is referenced by: sbceqi 4436 sbcne12 4438 sbceq1g 4440 sbceq2g 4442 csbie2df 4466 sbcfng 6744 csbfrecsg 8325 swrdspsleq 14713 fprodmodd 16045 relowlpssretop 37330 rdgeqoa 37336 poimirlem25 37605 cdlemk42 40898 minregex 43496 onfrALTlem5 44513 onfrALTlem4 44514 csbingVD 44855 onfrALTlem5VD 44856 onfrALTlem4VD 44857 csbeq2gVD 44863 csbsngVD 44864 csbunigVD 44869 csbfv12gALTVD 44870 |
Copyright terms: Public domain | W3C validator |