| Step | Hyp | Ref
| Expression |
| 1 | | dfsbcq2 3773 |
. . . 4
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝐵 ∈ 𝐶)) |
| 2 | | dfsbcq2 3773 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) |
| 3 | 2 | abbidv 2802 |
. . . . 5
⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
| 4 | | dfsbcq2 3773 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 5 | 4 | abbidv 2802 |
. . . . 5
⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 6 | 3, 5 | eleq12d 2829 |
. . . 4
⊢ (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
| 7 | | nfs1v 2157 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐵 |
| 8 | 7 | nfab 2905 |
. . . . . 6
⊢
Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} |
| 9 | | nfs1v 2157 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐶 |
| 10 | 9 | nfab 2905 |
. . . . . 6
⊢
Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
| 11 | 8, 10 | nfel 2914 |
. . . . 5
⊢
Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
| 12 | | sbab 2883 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵}) |
| 13 | | sbab 2883 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) |
| 14 | 12, 13 | eleq12d 2829 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐵 ∈ 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶})) |
| 15 | 11, 14 | sbiev 2315 |
. . . 4
⊢ ([𝑧 / 𝑥]𝐵 ∈ 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) |
| 16 | 1, 6, 15 | vtoclbg 3541 |
. . 3
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
| 17 | | df-csb 3880 |
. . . 4
⊢
⦋𝐴 /
𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 18 | | df-csb 3880 |
. . . 4
⊢
⦋𝐴 /
𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} |
| 19 | 17, 18 | eleq12i 2828 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 20 | 16, 19 | bitr4di 289 |
. 2
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 21 | | sbcex 3780 |
. . . 4
⊢
([𝐴 / 𝑥]𝐵 ∈ 𝐶 → 𝐴 ∈ V) |
| 22 | 21 | con3i 154 |
. . 3
⊢ (¬
𝐴 ∈ V → ¬
[𝐴 / 𝑥]𝐵 ∈ 𝐶) |
| 23 | | noel 4318 |
. . . 4
⊢ ¬
⦋𝐴 / 𝑥⦌𝐵 ∈ ∅ |
| 24 | | csbprc 4389 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐶 = ∅) |
| 25 | 24 | eleq2d 2821 |
. . . 4
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ∅)) |
| 26 | 23, 25 | mtbiri 327 |
. . 3
⊢ (¬
𝐴 ∈ V → ¬
⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
| 27 | 22, 26 | 2falsed 376 |
. 2
⊢ (¬
𝐴 ∈ V →
([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 28 | 20, 27 | pm2.61i 182 |
1
⊢
([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |