MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel12 Structured version   Visualization version   GIF version

Theorem sbcel12 4174
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel12 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem sbcel12
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3630 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝐵𝐶))
2 dfsbcq2 3630 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2921 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3630 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2921 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eleq12d 2875 . . . 4 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2285 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2949 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2285 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2949 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfel 2957 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2930 . . . . . 6 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2930 . . . . . 6 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eleq12d 2875 . . . . 5 (𝑥 = 𝑧 → (𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbie 2566 . . . 4 ([𝑧 / 𝑥]𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3456 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3723 . . . 4 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3723 . . . 4 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eleq12i 2874 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19syl6bbr 280 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
21 sbcex 3637 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
2221con3i 151 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
23 noel 4114 . . . 4 ¬ 𝐴 / 𝑥𝐵 ∈ ∅
24 csbprc 4172 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
2524eleq2d 2867 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 ∈ ∅))
2623, 25mtbiri 318 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2722, 262falsed 367 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2820, 27pm2.61i 176 1 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 197   = wceq 1637  [wsb 2059  wcel 2155  {cab 2788  Vcvv 3387  [wsbc 3627  csb 3722  c0 4110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2060  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-nul 4111
This theorem is referenced by:  sbcnel12g  4176  sbcel1g  4178  sbcel2  4180  sbccsb2  4197  csbmpt12  5199  ixpsnval  8142  fmptdF  29777  csbmpt22g  33488  csbfinxpg  33535  finixpnum  33701  sbcel2gOLD  39247
  Copyright terms: Public domain W3C validator