MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel12 Structured version   Visualization version   GIF version

Theorem sbcel12 4410
Description: Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcel12 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem sbcel12
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3790 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝐵𝐶))
2 dfsbcq2 3790 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐵))
32abbidv 2807 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} = {𝑦[𝐴 / 𝑥]𝑦𝐵})
4 dfsbcq2 3790 . . . . . 6 (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐶))
54abbidv 2807 . . . . 5 (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} = {𝑦[𝐴 / 𝑥]𝑦𝐶})
63, 5eleq12d 2834 . . . 4 (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶} ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
7 nfs1v 2155 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐵
87nfab 2910 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵}
9 nfs1v 2155 . . . . . . 7 𝑥[𝑧 / 𝑥]𝑦𝐶
109nfab 2910 . . . . . 6 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
118, 10nfel 2919 . . . . 5 𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}
12 sbab 2888 . . . . . 6 (𝑥 = 𝑧𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵})
13 sbab 2888 . . . . . 6 (𝑥 = 𝑧𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
1412, 13eleq12d 2834 . . . . 5 (𝑥 = 𝑧 → (𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶}))
1511, 14sbiev 2313 . . . 4 ([𝑧 / 𝑥]𝐵𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦𝐶})
161, 6, 15vtoclbg 3556 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶}))
17 df-csb 3899 . . . 4 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
18 df-csb 3899 . . . 4 𝐴 / 𝑥𝐶 = {𝑦[𝐴 / 𝑥]𝑦𝐶}
1917, 18eleq12i 2833 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ {𝑦[𝐴 / 𝑥]𝑦𝐵} ∈ {𝑦[𝐴 / 𝑥]𝑦𝐶})
2016, 19bitr4di 289 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
21 sbcex 3797 . . . 4 ([𝐴 / 𝑥]𝐵𝐶𝐴 ∈ V)
2221con3i 154 . . 3 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝐵𝐶)
23 noel 4337 . . . 4 ¬ 𝐴 / 𝑥𝐵 ∈ ∅
24 csbprc 4408 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
2524eleq2d 2826 . . . 4 𝐴 ∈ V → (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶𝐴 / 𝑥𝐵 ∈ ∅))
2623, 25mtbiri 327 . . 3 𝐴 ∈ V → ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
2722, 262falsed 376 . 2 𝐴 ∈ V → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
2820, 27pm2.61i 182 1 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  [wsb 2063  wcel 2107  {cab 2713  Vcvv 3479  [wsbc 3787  csb 3898  c0 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-nul 4333
This theorem is referenced by:  sbcnel12g  4413  sbcel1g  4415  sbcel2  4417  sbccsb2  4436  csbmpt12  5561  ixpsnval  8941  fmptdF  32667  csbmpo123  37333  csbfinxpg  37390  finixpnum  37613  csbxpgVD  44919  csbrngVD  44921
  Copyright terms: Public domain W3C validator