Step | Hyp | Ref
| Expression |
1 | | dfsbcq2 3701 |
. . . 4
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝐵 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝐵 ∈ 𝐶)) |
2 | | dfsbcq2 3701 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐵)) |
3 | 2 | abbidv 2822 |
. . . . 5
⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵}) |
4 | | dfsbcq2 3701 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑥]𝑦 ∈ 𝐶 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
5 | 4 | abbidv 2822 |
. . . . 5
⊢ (𝑧 = 𝐴 → {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
6 | 3, 5 | eleq12d 2846 |
. . . 4
⊢ (𝑧 = 𝐴 → ({𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
7 | | nfs1v 2157 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐵 |
8 | 7 | nfab 2925 |
. . . . . 6
⊢
Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} |
9 | | nfs1v 2157 |
. . . . . . 7
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝑦 ∈ 𝐶 |
10 | 9 | nfab 2925 |
. . . . . 6
⊢
Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
11 | 8, 10 | nfel 2933 |
. . . . 5
⊢
Ⅎ𝑥{𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶} |
12 | | sbab 2898 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝐵 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵}) |
13 | | sbab 2898 |
. . . . . 6
⊢ (𝑥 = 𝑧 → 𝐶 = {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) |
14 | 12, 13 | eleq12d 2846 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝐵 ∈ 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶})) |
15 | 11, 14 | sbiev 2322 |
. . . 4
⊢ ([𝑧 / 𝑥]𝐵 ∈ 𝐶 ↔ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝑧 / 𝑥]𝑦 ∈ 𝐶}) |
16 | 1, 6, 15 | vtoclbg 3489 |
. . 3
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶})) |
17 | | df-csb 3808 |
. . . 4
⊢
⦋𝐴 /
𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
18 | | df-csb 3808 |
. . . 4
⊢
⦋𝐴 /
𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} |
19 | 17, 18 | eleq12i 2844 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} ∈ {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
20 | 16, 19 | bitr4di 292 |
. 2
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
21 | | sbcex 3708 |
. . . 4
⊢
([𝐴 / 𝑥]𝐵 ∈ 𝐶 → 𝐴 ∈ V) |
22 | 21 | con3i 157 |
. . 3
⊢ (¬
𝐴 ∈ V → ¬
[𝐴 / 𝑥]𝐵 ∈ 𝐶) |
23 | | noel 4232 |
. . . 4
⊢ ¬
⦋𝐴 / 𝑥⦌𝐵 ∈ ∅ |
24 | | csbprc 4305 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐶 = ∅) |
25 | 24 | eleq2d 2837 |
. . . 4
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ∅)) |
26 | 23, 25 | mtbiri 330 |
. . 3
⊢ (¬
𝐴 ∈ V → ¬
⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |
27 | 22, 26 | 2falsed 380 |
. 2
⊢ (¬
𝐴 ∈ V →
([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
28 | 20, 27 | pm2.61i 185 |
1
⊢
([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) |