![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clabel | Structured version Visualization version GIF version |
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
clabel | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2847 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴)) | |
2 | abeq2 2897 | . . . 4 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
3 | 2 | anbi2ci 615 | . . 3 ⊢ ((𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
4 | 3 | exbii 1810 | . 2 ⊢ (∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
5 | 1, 4 | bitri 267 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 ∀wal 1505 = wceq 1507 ∃wex 1742 ∈ wcel 2050 {cab 2758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 |
This theorem is referenced by: sbabel 2966 grothprimlem 10053 ntrneiel2 39805 |
Copyright terms: Public domain | W3C validator |