![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clabel | Structured version Visualization version GIF version |
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
clabel | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2809 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴)) | |
2 | eqabb 2871 | . . . 4 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
3 | 2 | anbi2ci 623 | . . 3 ⊢ ((𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
4 | 3 | exbii 1848 | . 2 ⊢ (∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
5 | 1, 4 | bitri 274 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: sbabel 2936 sbabelOLD 2937 grothprimlem 10832 uniel 42270 ntrneiel2 43141 |
Copyright terms: Public domain | W3C validator |