![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clabel | Structured version Visualization version GIF version |
Description: Membership of a class abstraction in another class. (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
clabel | ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfclel 2820 | . 2 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴)) | |
2 | eqabb 2884 | . . . 4 ⊢ (𝑦 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑)) | |
3 | 2 | anbi2ci 624 | . . 3 ⊢ ((𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
4 | 3 | exbii 1846 | . 2 ⊢ (∃𝑦(𝑦 = {𝑥 ∣ 𝜑} ∧ 𝑦 ∈ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
5 | 1, 4 | bitri 275 | 1 ⊢ ({𝑥 ∣ 𝜑} ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝑦 ↔ 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: sbabel 2944 sbabelOLD 2945 grothprimlem 10902 uniel 43178 ntrneiel2 44048 |
Copyright terms: Public domain | W3C validator |