| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbc2iedf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbc2iedf.1 | ⊢ Ⅎ𝑥𝜑 |
| sbc2iedf.2 | ⊢ Ⅎ𝑦𝜑 |
| sbc2iedf.3 | ⊢ Ⅎ𝑥𝜒 |
| sbc2iedf.4 | ⊢ Ⅎ𝑦𝜒 |
| sbc2iedf.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbc2iedf.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| sbc2iedf.7 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbc2iedf | ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iedf.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sbc2iedf.6 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) |
| 4 | sbc2iedf.7 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 6 | sbc2iedf.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 7 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
| 8 | 6, 7 | nfan 1900 | . . 3 ⊢ Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) |
| 9 | sbc2iedf.4 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜒) |
| 11 | 3, 5, 8, 10 | sbciedf 3779 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 12 | sbc2iedf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 13 | sbc2iedf.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| 15 | 1, 11, 12, 14 | sbciedf 3779 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: rspc2daf 32445 |
| Copyright terms: Public domain | W3C validator |