Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbc2iedf Structured version   Visualization version   GIF version

Theorem sbc2iedf 30716
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.)
Hypotheses
Ref Expression
sbc2iedf.1 𝑥𝜑
sbc2iedf.2 𝑦𝜑
sbc2iedf.3 𝑥𝜒
sbc2iedf.4 𝑦𝜒
sbc2iedf.5 (𝜑𝐴𝑉)
sbc2iedf.6 (𝜑𝐵𝑊)
sbc2iedf.7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
sbc2iedf (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sbc2iedf
StepHypRef Expression
1 sbc2iedf.5 . 2 (𝜑𝐴𝑉)
2 sbc2iedf.6 . . . 4 (𝜑𝐵𝑊)
32adantr 480 . . 3 ((𝜑𝑥 = 𝐴) → 𝐵𝑊)
4 sbc2iedf.7 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
54anassrs 467 . . 3 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓𝜒))
6 sbc2iedf.2 . . . 4 𝑦𝜑
7 nfv 1918 . . . 4 𝑦 𝑥 = 𝐴
86, 7nfan 1903 . . 3 𝑦(𝜑𝑥 = 𝐴)
9 sbc2iedf.4 . . . 4 𝑦𝜒
109a1i 11 . . 3 ((𝜑𝑥 = 𝐴) → Ⅎ𝑦𝜒)
113, 5, 8, 10sbciedf 3755 . 2 ((𝜑𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓𝜒))
12 sbc2iedf.1 . 2 𝑥𝜑
13 sbc2iedf.3 . . 3 𝑥𝜒
1413a1i 11 . 2 (𝜑 → Ⅎ𝑥𝜒)
151, 11, 12, 14sbciedf 3755 1 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712
This theorem is referenced by:  rspc2daf  30717
  Copyright terms: Public domain W3C validator