Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbc2iedf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
Ref | Expression |
---|---|
sbc2iedf.1 | ⊢ Ⅎ𝑥𝜑 |
sbc2iedf.2 | ⊢ Ⅎ𝑦𝜑 |
sbc2iedf.3 | ⊢ Ⅎ𝑥𝜒 |
sbc2iedf.4 | ⊢ Ⅎ𝑦𝜒 |
sbc2iedf.5 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbc2iedf.6 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sbc2iedf.7 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbc2iedf | ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc2iedf.5 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sbc2iedf.6 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑊) |
4 | sbc2iedf.7 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
5 | 4 | anassrs 467 | . . 3 ⊢ (((𝜑 ∧ 𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
6 | sbc2iedf.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
7 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
8 | 6, 7 | nfan 1903 | . . 3 ⊢ Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) |
9 | sbc2iedf.4 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → Ⅎ𝑦𝜒) |
11 | 3, 5, 8, 10 | sbciedf 3755 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
12 | sbc2iedf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
13 | sbc2iedf.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) |
15 | 1, 11, 12, 14 | sbciedf 3755 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: rspc2daf 30717 |
Copyright terms: Public domain | W3C validator |