| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbciedf | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| sbciedf.3 | ⊢ Ⅎ𝑥𝜑 |
| sbciedf.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| sbciedf | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | sbciedf.4 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | sbciedf.3 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 4 | sbcied.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 6 | 3, 5 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 7 | sbciegft 3807 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | |
| 8 | 1, 2, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: sbc2iegf 3845 csbiebt 3908 sbcnestgfw 4401 sbcnestgf 4406 ovmpodxf 7562 sbc2iedf 32451 reuf1odnf 47103 ovmpordxf 48281 |
| Copyright terms: Public domain | W3C validator |