MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciedf Structured version   Visualization version   GIF version

Theorem sbciedf 3784
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1 (𝜑𝐴𝑉)
sbcied.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
sbciedf.3 𝑥𝜑
sbciedf.4 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
sbciedf (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝑉(𝑥)

Proof of Theorem sbciedf
StepHypRef Expression
1 sbcied.1 . 2 (𝜑𝐴𝑉)
2 sbciedf.4 . 2 (𝜑 → Ⅎ𝑥𝜒)
3 sbciedf.3 . . 3 𝑥𝜑
4 sbcied.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
54ex 412 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
63, 5alrimi 2216 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
7 sbciegft 3778 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒))) → ([𝐴 / 𝑥]𝜓𝜒))
81, 2, 6, 7syl3anc 1373 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wnf 1784  wcel 2111  [wsbc 3741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3742
This theorem is referenced by:  sbc2iegf  3816  csbiebt  3879  sbcnestgfw  4371  sbcnestgf  4376  ovmpodxf  7496  sbc2iedf  32442  reuf1odnf  47144  ovmpordxf  48376
  Copyright terms: Public domain W3C validator