MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciedf Structured version   Visualization version   GIF version

Theorem sbciedf 3760
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1 (𝜑𝐴𝑉)
sbcied.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
sbciedf.3 𝑥𝜑
sbciedf.4 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
sbciedf (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)   𝑉(𝑥)

Proof of Theorem sbciedf
StepHypRef Expression
1 sbcied.1 . 2 (𝜑𝐴𝑉)
2 sbciedf.4 . 2 (𝜑 → Ⅎ𝑥𝜒)
3 sbciedf.3 . . 3 𝑥𝜑
4 sbcied.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
54ex 413 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
63, 5alrimi 2206 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
7 sbciegft 3754 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒))) → ([𝐴 / 𝑥]𝜓𝜒))
81, 2, 6, 7syl3anc 1370 1 (𝜑 → ([𝐴 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wnf 1786  wcel 2106  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by:  sbciedOLD  3762  sbc2iegf  3798  csbiebt  3862  sbcnestgfw  4352  sbcnestgf  4357  ovmpodxf  7423  sbc2iedf  30815  reuf1odnf  44599  ovmpordxf  45674
  Copyright terms: Public domain W3C validator