Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbciedf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbcied.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sbcied.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
sbciedf.3 | ⊢ Ⅎ𝑥𝜑 |
sbciedf.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
sbciedf | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcied.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sbciedf.4 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
3 | sbciedf.3 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | sbcied.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
6 | 3, 5 | alrimi 2209 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
7 | sbciegft 3749 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜒 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) | |
8 | 1, 2, 6, 7 | syl3anc 1369 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbciedOLD 3757 sbc2iegf 3794 csbiebt 3858 sbcnestgfw 4349 sbcnestgf 4354 ovmpodxf 7401 sbc2iedf 30716 reuf1odnf 44486 ovmpordxf 45562 |
Copyright terms: Public domain | W3C validator |