Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspc2daf Structured version   Visualization version   GIF version

Theorem rspc2daf 30865
Description: Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.)
Hypotheses
Ref Expression
sbc2iedf.1 𝑥𝜑
sbc2iedf.2 𝑦𝜑
sbc2iedf.3 𝑥𝜒
sbc2iedf.4 𝑦𝜒
sbc2iedf.5 (𝜑𝐴𝑉)
sbc2iedf.6 (𝜑𝐵𝑊)
sbc2iedf.7 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
rspc2daf.8 (𝜑 → ∀𝑥𝑉𝑦𝑊 𝜓)
Assertion
Ref Expression
rspc2daf (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉   𝑥,𝑊,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem rspc2daf
StepHypRef Expression
1 rspc2daf.8 . . . 4 (𝜑 → ∀𝑥𝑉𝑦𝑊 𝜓)
2 sbc2iedf.1 . . . . 5 𝑥𝜑
3 nfcv 2904 . . . . . 6 𝑥𝑊
4 nfsbc1v 3741 . . . . . 6 𝑥[𝐴 / 𝑥]𝜓
53, 4nfralw 3290 . . . . 5 𝑥𝑦𝑊 [𝐴 / 𝑥]𝜓
6 sbc2iedf.5 . . . . 5 (𝜑𝐴𝑉)
7 sbc2iedf.2 . . . . . . 7 𝑦𝜑
8 nfv 1915 . . . . . . 7 𝑦 𝑥 = 𝐴
97, 8nfan 1900 . . . . . 6 𝑦(𝜑𝑥 = 𝐴)
10 sbceq1a 3732 . . . . . . 7 (𝑥 = 𝐴 → (𝜓[𝐴 / 𝑥]𝜓))
1110adantl 483 . . . . . 6 ((𝜑𝑥 = 𝐴) → (𝜓[𝐴 / 𝑥]𝜓))
129, 11ralbid 3252 . . . . 5 ((𝜑𝑥 = 𝐴) → (∀𝑦𝑊 𝜓 ↔ ∀𝑦𝑊 [𝐴 / 𝑥]𝜓))
132, 5, 6, 12rspcdf 3553 . . . 4 (𝜑 → (∀𝑥𝑉𝑦𝑊 𝜓 → ∀𝑦𝑊 [𝐴 / 𝑥]𝜓))
141, 13mpd 15 . . 3 (𝜑 → ∀𝑦𝑊 [𝐴 / 𝑥]𝜓)
15 nfsbc1v 3741 . . . 4 𝑦[𝐵 / 𝑦][𝐴 / 𝑥]𝜓
16 sbc2iedf.6 . . . 4 (𝜑𝐵𝑊)
17 sbceq1a 3732 . . . . 5 (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑦][𝐴 / 𝑥]𝜓))
1817adantl 483 . . . 4 ((𝜑𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜓[𝐵 / 𝑦][𝐴 / 𝑥]𝜓))
197, 15, 16, 18rspcdf 3553 . . 3 (𝜑 → (∀𝑦𝑊 [𝐴 / 𝑥]𝜓[𝐵 / 𝑦][𝐴 / 𝑥]𝜓))
2014, 19mpd 15 . 2 (𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜓)
21 sbc2iedf.3 . . . 4 𝑥𝜒
22 sbc2iedf.4 . . . 4 𝑦𝜒
23 sbc2iedf.7 . . . 4 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
242, 7, 21, 22, 6, 16, 23sbc2iedf 30864 . . 3 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓𝜒))
25 sbccom 3809 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓[𝐵 / 𝑦][𝐴 / 𝑥]𝜓)
2624, 25bitr3di 286 . 2 (𝜑 → (𝜒[𝐵 / 𝑦][𝐴 / 𝑥]𝜓))
2720, 26mpbird 257 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wnf 1783  wcel 2104  wral 3061  [wsbc 3721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-v 3439  df-sbc 3722
This theorem is referenced by:  opreu2reuALT  30874
  Copyright terms: Public domain W3C validator