Proof of Theorem rspc2daf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | rspc2daf.8 | 
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) | 
| 2 |   | sbc2iedf.1 | 
. . . . 5
⊢
Ⅎ𝑥𝜑 | 
| 3 |   | nfcv 2897 | 
. . . . . 6
⊢
Ⅎ𝑥𝑊 | 
| 4 |   | nfsbc1v 3790 | 
. . . . . 6
⊢
Ⅎ𝑥[𝐴 / 𝑥]𝜓 | 
| 5 | 3, 4 | nfralw 3294 | 
. . . . 5
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓 | 
| 6 |   | sbc2iedf.5 | 
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 7 |   | sbc2iedf.2 | 
. . . . . . 7
⊢
Ⅎ𝑦𝜑 | 
| 8 |   | nfv 1913 | 
. . . . . . 7
⊢
Ⅎ𝑦 𝑥 = 𝐴 | 
| 9 | 7, 8 | nfan 1898 | 
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) | 
| 10 |   | sbceq1a 3781 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝜓 ↔ [𝐴 / 𝑥]𝜓)) | 
| 11 | 10 | adantl 481 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ [𝐴 / 𝑥]𝜓)) | 
| 12 | 9, 11 | ralbid 3258 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (∀𝑦 ∈ 𝑊 𝜓 ↔ ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓)) | 
| 13 | 2, 5, 6, 12 | rspcdf 3592 | 
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓 → ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓)) | 
| 14 | 1, 13 | mpd 15 | 
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓) | 
| 15 |   | nfsbc1v 3790 | 
. . . 4
⊢
Ⅎ𝑦[𝐵 / 𝑦][𝐴 / 𝑥]𝜓 | 
| 16 |   | sbc2iedf.6 | 
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| 17 |   | sbceq1a 3781 | 
. . . . 5
⊢ (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) | 
| 18 | 17 | adantl 481 | 
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) | 
| 19 | 7, 15, 16, 18 | rspcdf 3592 | 
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓 → [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) | 
| 20 | 14, 19 | mpd 15 | 
. 2
⊢ (𝜑 → [𝐵 / 𝑦][𝐴 / 𝑥]𝜓) | 
| 21 |   | sbc2iedf.3 | 
. . . 4
⊢
Ⅎ𝑥𝜒 | 
| 22 |   | sbc2iedf.4 | 
. . . 4
⊢
Ⅎ𝑦𝜒 | 
| 23 |   | sbc2iedf.7 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | 
| 24 | 2, 7, 21, 22, 6, 16, 23 | sbc2iedf 32411 | 
. . 3
⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | 
| 25 |   | sbccom 3851 | 
. . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓) | 
| 26 | 24, 25 | bitr3di 286 | 
. 2
⊢ (𝜑 → (𝜒 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) | 
| 27 | 20, 26 | mpbird 257 | 
1
⊢ (𝜑 → 𝜒) |