Proof of Theorem rspc2daf
Step | Hyp | Ref
| Expression |
1 | | rspc2daf.8 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) |
2 | | sbc2iedf.1 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
3 | | nfcv 2904 |
. . . . . 6
⊢
Ⅎ𝑥𝑊 |
4 | | nfsbc1v 3741 |
. . . . . 6
⊢
Ⅎ𝑥[𝐴 / 𝑥]𝜓 |
5 | 3, 4 | nfralw 3290 |
. . . . 5
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓 |
6 | | sbc2iedf.5 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | sbc2iedf.2 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
8 | | nfv 1915 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑥 = 𝐴 |
9 | 7, 8 | nfan 1900 |
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) |
10 | | sbceq1a 3732 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝜓 ↔ [𝐴 / 𝑥]𝜓)) |
11 | 10 | adantl 483 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ [𝐴 / 𝑥]𝜓)) |
12 | 9, 11 | ralbid 3252 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (∀𝑦 ∈ 𝑊 𝜓 ↔ ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓)) |
13 | 2, 5, 6, 12 | rspcdf 3553 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓 → ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓)) |
14 | 1, 13 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓) |
15 | | nfsbc1v 3741 |
. . . 4
⊢
Ⅎ𝑦[𝐵 / 𝑦][𝐴 / 𝑥]𝜓 |
16 | | sbc2iedf.6 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
17 | | sbceq1a 3732 |
. . . . 5
⊢ (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
18 | 17 | adantl 483 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
19 | 7, 15, 16, 18 | rspcdf 3553 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓 → [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
20 | 14, 19 | mpd 15 |
. 2
⊢ (𝜑 → [𝐵 / 𝑦][𝐴 / 𝑥]𝜓) |
21 | | sbc2iedf.3 |
. . . 4
⊢
Ⅎ𝑥𝜒 |
22 | | sbc2iedf.4 |
. . . 4
⊢
Ⅎ𝑦𝜒 |
23 | | sbc2iedf.7 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
24 | 2, 7, 21, 22, 6, 16, 23 | sbc2iedf 30864 |
. . 3
⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
25 | | sbccom 3809 |
. . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓) |
26 | 24, 25 | bitr3di 286 |
. 2
⊢ (𝜑 → (𝜒 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
27 | 20, 26 | mpbird 257 |
1
⊢ (𝜑 → 𝜒) |