Proof of Theorem rspc2daf
| Step | Hyp | Ref
| Expression |
| 1 | | rspc2daf.8 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) |
| 2 | | sbc2iedf.1 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
| 3 | | nfcv 2893 |
. . . . . 6
⊢
Ⅎ𝑥𝑊 |
| 4 | | nfsbc1v 3781 |
. . . . . 6
⊢
Ⅎ𝑥[𝐴 / 𝑥]𝜓 |
| 5 | 3, 4 | nfralw 3288 |
. . . . 5
⊢
Ⅎ𝑥∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓 |
| 6 | | sbc2iedf.5 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 7 | | sbc2iedf.2 |
. . . . . . 7
⊢
Ⅎ𝑦𝜑 |
| 8 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑥 = 𝐴 |
| 9 | 7, 8 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) |
| 10 | | sbceq1a 3772 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝜓 ↔ [𝐴 / 𝑥]𝜓)) |
| 11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ [𝐴 / 𝑥]𝜓)) |
| 12 | 9, 11 | ralbid 3252 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (∀𝑦 ∈ 𝑊 𝜓 ↔ ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓)) |
| 13 | 2, 5, 6, 12 | rspcdf 3584 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓 → ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓)) |
| 14 | 1, 13 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓) |
| 15 | | nfsbc1v 3781 |
. . . 4
⊢
Ⅎ𝑦[𝐵 / 𝑦][𝐴 / 𝑥]𝜓 |
| 16 | | sbc2iedf.6 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 17 | | sbceq1a 3772 |
. . . . 5
⊢ (𝑦 = 𝐵 → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
| 18 | 17 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → ([𝐴 / 𝑥]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
| 19 | 7, 15, 16, 18 | rspcdf 3584 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝑊 [𝐴 / 𝑥]𝜓 → [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
| 20 | 14, 19 | mpd 15 |
. 2
⊢ (𝜑 → [𝐵 / 𝑦][𝐴 / 𝑥]𝜓) |
| 21 | | sbc2iedf.3 |
. . . 4
⊢
Ⅎ𝑥𝜒 |
| 22 | | sbc2iedf.4 |
. . . 4
⊢
Ⅎ𝑦𝜒 |
| 23 | | sbc2iedf.7 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| 24 | 2, 7, 21, 22, 6, 16, 23 | sbc2iedf 32401 |
. . 3
⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 25 | | sbccom 3842 |
. . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓) |
| 26 | 24, 25 | bitr3di 286 |
. 2
⊢ (𝜑 → (𝜒 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜓)) |
| 27 | 20, 26 | mpbird 257 |
1
⊢ (𝜑 → 𝜒) |