MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbi2OLD Structured version   Visualization version   GIF version

Theorem sbcbi2OLD 3779
Description: Obsolete proof of sbcbi2 3778 as of 5-May-2024. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcbi2OLD (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2OLD
StepHypRef Expression
1 nfa1 2148 . 2 𝑥𝑥(𝜑𝜓)
2 sp 2176 . 2 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
31, 2sbcbid 3774 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator