MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbi2OLD Structured version   Visualization version   GIF version

Theorem sbcbi2OLD 3835
Description: Obsolete proof of sbcbi2 3834 as of 5-May-2024. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcbi2OLD (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2OLD
StepHypRef Expression
1 nfa1 2140 . 2 𝑥𝑥(𝜑𝜓)
2 sp 2168 . 2 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
31, 2sbcbid 3830 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-sbc 3773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator