MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcbi2OLD Structured version   Visualization version   GIF version

Theorem sbcbi2OLD 3776
Description: Obsolete proof of sbcbi2 3775 as of 5-May-2024. (Contributed by Giovanni Mascellani, 9-Apr-2018.) (Proof shortened by Wolf Lammen, 4-May-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcbi2OLD (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcbi2OLD
StepHypRef Expression
1 nfa1 2154 . 2 𝑥𝑥(𝜑𝜓)
2 sp 2182 . 2 (∀𝑥(𝜑𝜓) → (𝜑𝜓))
31, 2sbcbid 3770 1 (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-sbc 3713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator