![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqal | Structured version Visualization version GIF version |
Description: Class version of one implication of equvelv 2034. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
Ref | Expression |
---|---|
sbceqal | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2736 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
2 | eqeq1 2736 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵))) |
4 | eqid 2732 | . . . 4 ⊢ 𝐴 = 𝐴 | |
5 | 4 | a1bi 362 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵)) |
6 | 3, 5 | bitr4di 288 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
7 | 6 | spcgv 3586 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: sbeqalb 3845 |
Copyright terms: Public domain | W3C validator |