MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqal Structured version   Visualization version   GIF version

Theorem sbceqal 3841
Description: Class version of one implication of equvelv 2027. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.)
Assertion
Ref Expression
sbceqal (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sbceqal
StepHypRef Expression
1 eqeq1 2730 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
2 eqeq1 2730 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
31, 2imbi12d 343 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ (𝐴 = 𝐴𝐴 = 𝐵)))
4 eqid 2726 . . . 4 𝐴 = 𝐴
54a1bi 361 . . 3 (𝐴 = 𝐵 ↔ (𝐴 = 𝐴𝐴 = 𝐵))
63, 5bitr4di 288 . 2 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴 = 𝐵))
76spcgv 3581 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532   = wceq 1534  wcel 2099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464
This theorem is referenced by:  sbeqalb  3843
  Copyright terms: Public domain W3C validator