Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceqal | Structured version Visualization version GIF version |
Description: Class version of one implication of equvelv 2034. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
Ref | Expression |
---|---|
sbceqal | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
2 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵))) |
4 | eqid 2738 | . . . 4 ⊢ 𝐴 = 𝐴 | |
5 | 4 | a1bi 363 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵)) |
6 | 3, 5 | bitr4di 289 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
7 | 6 | spcgv 3535 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: sbeqalb 3784 |
Copyright terms: Public domain | W3C validator |