| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqal | Structured version Visualization version GIF version | ||
| Description: Class version of one implication of equvelv 2032. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| sbceqal | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
| 2 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵))) |
| 4 | eqid 2731 | . . . 4 ⊢ 𝐴 = 𝐴 | |
| 5 | 4 | a1bi 362 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵)) |
| 6 | 3, 5 | bitr4di 289 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
| 7 | 6 | spcgv 3546 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: sbeqalb 3799 |
| Copyright terms: Public domain | W3C validator |