![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqal | Structured version Visualization version GIF version |
Description: Class version of one implication of equvelv 2027. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.) |
Ref | Expression |
---|---|
sbceqal | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2730 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
2 | eqeq1 2730 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | imbi12d 343 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵))) |
4 | eqid 2726 | . . . 4 ⊢ 𝐴 = 𝐴 | |
5 | 4 | a1bi 361 | . . 3 ⊢ (𝐴 = 𝐵 ↔ (𝐴 = 𝐴 → 𝐴 = 𝐵)) |
6 | 3, 5 | bitr4di 288 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
7 | 6 | spcgv 3581 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 = wceq 1534 ∈ wcel 2099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 |
This theorem is referenced by: sbeqalb 3843 |
Copyright terms: Public domain | W3C validator |