MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqal Structured version   Visualization version   GIF version

Theorem sbceqal 3870
Description: Class version of one implication of equvelv 2030. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by SN, 26-Oct-2024.)
Assertion
Ref Expression
sbceqal (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sbceqal
StepHypRef Expression
1 eqeq1 2744 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐴𝐴 = 𝐴))
2 eqeq1 2744 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
31, 2imbi12d 344 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ (𝐴 = 𝐴𝐴 = 𝐵)))
4 eqid 2740 . . . 4 𝐴 = 𝐴
54a1bi 362 . . 3 (𝐴 = 𝐵 ↔ (𝐴 = 𝐴𝐴 = 𝐵))
63, 5bitr4di 289 . 2 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴 = 𝐵))
76spcgv 3609 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  sbeqalb  3872
  Copyright terms: Public domain W3C validator