|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbceqalOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of sbceqal 3850 as of 26-Oct-2024. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sbceqalOLD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbc 3800 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵))) | |
| 2 | sbcimg 3836 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵))) | |
| 3 | eqid 2736 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
| 4 | eqsbc1 3834 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
| 5 | 3, 4 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝑥 = 𝐴) | 
| 6 | pm5.5 361 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | 
| 8 | eqsbc1 3834 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 9 | 2, 7, 8 | 3bitrd 305 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) | 
| 10 | 1, 9 | sylibd 239 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2107 [wsbc 3787 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3788 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |