![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sbceqal 3870 as of 26-Oct-2024. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbceqalOLD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbc 3817 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵))) | |
2 | sbcimg 3856 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵))) | |
3 | eqid 2740 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
4 | eqsbc1 3854 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
5 | 3, 4 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝑥 = 𝐴) |
6 | pm5.5 361 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) |
8 | eqsbc1 3854 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
9 | 2, 7, 8 | 3bitrd 305 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
10 | 1, 9 | sylibd 239 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |