Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbceqalOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sbceqal 3782 as of 26-Oct-2024. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbceqalOLD | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbc 3729 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵))) | |
2 | sbcimg 3767 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵))) | |
3 | eqid 2738 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
4 | eqsbc1 3765 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴 ↔ 𝐴 = 𝐴)) | |
5 | 3, 4 | mpbiri 257 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → [𝐴 / 𝑥]𝑥 = 𝐴) |
6 | pm5.5 362 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴 → [𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵)) |
8 | eqsbc1 3765 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
9 | 2, 7, 8 | 3bitrd 305 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴 → 𝑥 = 𝐵) ↔ 𝐴 = 𝐵)) |
10 | 1, 9 | sylibd 238 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 = 𝐵) → 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |