MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqalOLD Structured version   Visualization version   GIF version

Theorem sbceqalOLD 3858
Description: Obsolete version of sbceqal 3857 as of 26-Oct-2024. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbceqalOLD (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sbceqalOLD
StepHypRef Expression
1 spsbc 3804 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → [𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵)))
2 sbcimg 3843 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵) ↔ ([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵)))
3 eqid 2735 . . . . 5 𝐴 = 𝐴
4 eqsbc1 3841 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐴𝐴 = 𝐴))
53, 4mpbiri 258 . . . 4 (𝐴𝑉[𝐴 / 𝑥]𝑥 = 𝐴)
6 pm5.5 361 . . . 4 ([𝐴 / 𝑥]𝑥 = 𝐴 → (([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵))
75, 6syl 17 . . 3 (𝐴𝑉 → (([𝐴 / 𝑥]𝑥 = 𝐴[𝐴 / 𝑥]𝑥 = 𝐵) ↔ [𝐴 / 𝑥]𝑥 = 𝐵))
8 eqsbc1 3841 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵𝐴 = 𝐵))
92, 7, 83bitrd 305 . 2 (𝐴𝑉 → ([𝐴 / 𝑥](𝑥 = 𝐴𝑥 = 𝐵) ↔ 𝐴 = 𝐵))
101, 9sylibd 239 1 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2106  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-sbc 3792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator