| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcgv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | spcdv 3560 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 |
| This theorem is referenced by: spcv 3571 mob2 3686 sbceqal 3815 intss1 4927 dfiin2g 4996 alxfr 5362 funmo 6531 isofrlem 7315 tfisi 7835 limomss 7847 nnlim 7856 f1oweALT 7951 pssnn 9132 findcard3 9229 findcard3OLD 9230 frmin 9702 ttukeylem1 10462 rami 16986 ramcl 17000 islbs3 21065 mplsubglem 21908 mpllsslem 21909 uniopn 22784 chlimi 31163 iinabrex 32498 dfon2lem3 35773 dfon2lem8 35778 neificl 37747 hashnexinj 42116 ismrcd1 42686 mnuop23d 44255 relpfrlem 44943 modelaxreplem2 44969 |
| Copyright terms: Public domain | W3C validator |