| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcgv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2141, ax-11 2157. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | spcdv 3573 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 |
| This theorem is referenced by: spcv 3584 mob2 3698 sbceqal 3827 intss1 4939 dfiin2g 5008 alxfr 5377 friOLD 5612 funmo 6551 isofrlem 7333 tfisi 7854 limomss 7866 nnlim 7875 f1oweALT 7971 pssnn 9182 findcard3 9290 findcard3OLD 9291 frmin 9763 ttukeylem1 10523 rami 17035 ramcl 17049 islbs3 21116 mplsubglem 21959 mpllsslem 21960 uniopn 22835 chlimi 31215 iinabrex 32550 dfon2lem3 35803 dfon2lem8 35808 neificl 37777 hashnexinj 42141 ismrcd1 42721 mnuop23d 44290 relpfrlem 44978 modelaxreplem2 45004 |
| Copyright terms: Public domain | W3C validator |