| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcgv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | spcdv 3549 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 |
| This theorem is referenced by: spcv 3560 mob2 3675 sbceqal 3804 intss1 4913 dfiin2g 4981 alxfr 5346 funmo 6498 isofrlem 7277 tfisi 7792 limomss 7804 nnlim 7813 f1oweALT 7907 pssnn 9082 findcard3 9172 frmin 9645 ttukeylem1 10403 rami 16927 ramcl 16941 islbs3 21062 mplsubglem 21906 mpllsslem 21907 uniopn 22782 chlimi 31178 iinabrex 32513 dfon2lem3 35769 dfon2lem8 35774 neificl 37743 hashnexinj 42111 ismrcd1 42681 mnuop23d 44249 relpfrlem 44937 modelaxreplem2 44963 |
| Copyright terms: Public domain | W3C validator |