Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcgv | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2137, ax-11 2154. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
3 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
5 | 2, 4 | spcdv 3533 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: spcv 3544 mob2 3650 sbceqal 3782 intss1 4894 dfiin2g 4962 alxfr 5330 friOLD 5550 isofrlem 7211 tfisi 7705 limomss 7717 nnlim 7726 f1oweALT 7815 pssnn 8951 pssnnOLD 9040 findcard3 9057 frmin 9507 ttukeylem1 10265 rami 16716 ramcl 16730 islbs3 20417 mplsubglem 21205 mpllsslem 21206 uniopn 22046 chlimi 29596 iinabrex 30908 dfon2lem3 33761 dfon2lem8 33766 neificl 35911 ismrcd1 40520 mnuop23d 41884 |
Copyright terms: Public domain | W3C validator |