MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgv Structured version   Visualization version   GIF version

Theorem spcgv 3551
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.)
Hypothesis
Ref Expression
spcgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcgv (𝐴𝑉 → (∀𝑥𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem spcgv
StepHypRef Expression
1 elex 3457 . 2 (𝐴𝑉𝐴 ∈ V)
2 id 22 . . 3 (𝐴 ∈ V → 𝐴 ∈ V)
3 spcgv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
43adantl 481 . . 3 ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑𝜓))
52, 4spcdv 3549 . 2 (𝐴 ∈ V → (∀𝑥𝜑𝜓))
61, 5syl 17 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438
This theorem is referenced by:  spcv  3560  mob2  3675  sbceqal  3804  intss1  4913  dfiin2g  4981  alxfr  5346  funmo  6498  isofrlem  7277  tfisi  7792  limomss  7804  nnlim  7813  f1oweALT  7907  pssnn  9082  findcard3  9172  frmin  9645  ttukeylem1  10403  rami  16927  ramcl  16941  islbs3  21062  mplsubglem  21906  mpllsslem  21907  uniopn  22782  chlimi  31178  iinabrex  32513  dfon2lem3  35769  dfon2lem8  35774  neificl  37743  hashnexinj  42111  ismrcd1  42681  mnuop23d  44249  relpfrlem  44937  modelaxreplem2  44963
  Copyright terms: Public domain W3C validator