| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcgv | Structured version Visualization version GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 25-Aug-2023.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 3 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
| 5 | 2, 4 | spcdv 3563 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: spcv 3574 mob2 3689 sbceqal 3818 intss1 4930 dfiin2g 4999 alxfr 5365 funmo 6534 isofrlem 7318 tfisi 7838 limomss 7850 nnlim 7859 f1oweALT 7954 pssnn 9138 findcard3 9236 findcard3OLD 9237 frmin 9709 ttukeylem1 10469 rami 16993 ramcl 17007 islbs3 21072 mplsubglem 21915 mpllsslem 21916 uniopn 22791 chlimi 31170 iinabrex 32505 dfon2lem3 35780 dfon2lem8 35785 neificl 37754 hashnexinj 42123 ismrcd1 42693 mnuop23d 44262 relpfrlem 44950 modelaxreplem2 44976 |
| Copyright terms: Public domain | W3C validator |