MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcgv Structured version   Visualization version   GIF version

Theorem spcgv 3535
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2137, ax-11 2154. (Revised by Wolf Lammen, 25-Aug-2023.)
Hypothesis
Ref Expression
spcgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcgv (𝐴𝑉 → (∀𝑥𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem spcgv
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 id 22 . . 3 (𝐴 ∈ V → 𝐴 ∈ V)
3 spcgv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
43adantl 482 . . 3 ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑𝜓))
52, 4spcdv 3533 . 2 (𝐴 ∈ V → (∀𝑥𝜑𝜓))
61, 5syl 17 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434
This theorem is referenced by:  spcv  3544  mob2  3650  sbceqal  3782  intss1  4894  dfiin2g  4962  alxfr  5330  friOLD  5550  isofrlem  7211  tfisi  7705  limomss  7717  nnlim  7726  f1oweALT  7815  pssnn  8951  pssnnOLD  9040  findcard3  9057  frmin  9507  ttukeylem1  10265  rami  16716  ramcl  16730  islbs3  20417  mplsubglem  21205  mpllsslem  21206  uniopn  22046  chlimi  29596  iinabrex  30908  dfon2lem3  33761  dfon2lem8  33766  neificl  35911  ismrcd1  40520  mnuop23d  41884
  Copyright terms: Public domain W3C validator