| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex2 | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcex2 | ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3754 | . 2 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 → 𝐴 ∈ V) | |
| 2 | sbcex 3754 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
| 4 | dfsbcq2 3747 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝐴 / 𝑦]∃𝑥𝜑)) | |
| 5 | dfsbcq2 3747 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
| 6 | 5 | exbidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
| 7 | sbex 2281 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
| 8 | 4, 6, 7 | vtoclbg 3514 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
| 9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 [wsb 2065 ∈ wcel 2109 Vcvv 3438 [wsbc 3744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-sbc 3745 |
| This theorem is referenced by: sbcabel 3832 csbuni 4890 csbxp 5723 csbdm 5844 sbcfung 6510 csbfrecsg 8224 bnj89 34690 bnj985v 34922 bnj985 34923 csboprabg 37306 sbcexf 38097 onfrALTlem5 44519 onfrALTlem5VD 44861 csbxpgVD 44870 csbrngVD 44872 csbunigVD 44874 |
| Copyright terms: Public domain | W3C validator |