| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex2 | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcex2 | ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3775 | . 2 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 → 𝐴 ∈ V) | |
| 2 | sbcex 3775 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
| 4 | dfsbcq2 3768 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝐴 / 𝑦]∃𝑥𝜑)) | |
| 5 | dfsbcq2 3768 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
| 6 | 5 | exbidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
| 7 | sbex 2281 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
| 8 | 4, 6, 7 | vtoclbg 3536 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
| 9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 [wsb 2064 ∈ wcel 2108 Vcvv 3459 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sbc 3766 |
| This theorem is referenced by: sbcabel 3853 csbuni 4912 csbxp 5754 csbdm 5877 sbcfung 6560 csbfrecsg 8283 bnj89 34752 bnj985v 34984 bnj985 34985 csboprabg 37348 sbcexf 38139 onfrALTlem5 44567 onfrALTlem5VD 44909 csbxpgVD 44918 csbrngVD 44920 csbunigVD 44922 |
| Copyright terms: Public domain | W3C validator |