![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcex2 | Structured version Visualization version GIF version |
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcex2 | ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3786 | . 2 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 → 𝐴 ∈ V) | |
2 | sbcex 3786 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
3 | 2 | exlimiv 1926 | . 2 ⊢ (∃𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
4 | dfsbcq2 3779 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝐴 / 𝑦]∃𝑥𝜑)) | |
5 | dfsbcq2 3779 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
6 | 5 | exbidv 1917 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
7 | sbex 2271 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
8 | 4, 6, 7 | vtoclbg 3542 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∃wex 1774 [wsb 2060 ∈ wcel 2099 Vcvv 3471 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-sbc 3777 |
This theorem is referenced by: sbcabel 3871 csbuni 4939 csbxp 5777 csbdm 5900 sbcfung 6577 csbfrecsg 8290 bnj89 34352 bnj985v 34584 bnj985 34585 csboprabg 36809 sbcexf 37588 onfrALTlem5 43981 onfrALTlem5VD 44324 csbxpgVD 44333 csbrngVD 44335 csbunigVD 44337 |
Copyright terms: Public domain | W3C validator |