| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcex2 | Structured version Visualization version GIF version | ||
| Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcex2 | ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3763 | . 2 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 → 𝐴 ∈ V) | |
| 2 | sbcex 3763 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
| 3 | 2 | exlimiv 1930 | . 2 ⊢ (∃𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
| 4 | dfsbcq2 3756 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝐴 / 𝑦]∃𝑥𝜑)) | |
| 5 | dfsbcq2 3756 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
| 6 | 5 | exbidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
| 7 | sbex 2281 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
| 8 | 4, 6, 7 | vtoclbg 3523 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
| 9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 [wsb 2065 ∈ wcel 2109 Vcvv 3447 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-sbc 3754 |
| This theorem is referenced by: sbcabel 3841 csbuni 4900 csbxp 5738 csbdm 5861 sbcfung 6540 csbfrecsg 8263 bnj89 34711 bnj985v 34943 bnj985 34944 csboprabg 37318 sbcexf 38109 onfrALTlem5 44532 onfrALTlem5VD 44874 csbxpgVD 44883 csbrngVD 44885 csbunigVD 44887 |
| Copyright terms: Public domain | W3C validator |