MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcex2 Structured version   Visualization version   GIF version

Theorem sbcex2 3777
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcex2 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbcex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3721 . 2 ([𝐴 / 𝑦]𝑥𝜑𝐴 ∈ V)
2 sbcex 3721 . . 3 ([𝐴 / 𝑦]𝜑𝐴 ∈ V)
32exlimiv 1934 . 2 (∃𝑥[𝐴 / 𝑦]𝜑𝐴 ∈ V)
4 dfsbcq2 3714 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
5 dfsbcq2 3714 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
65exbidv 1925 . . 3 (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
7 sbex 2281 . . 3 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
84, 6, 7vtoclbg 3497 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
91, 3, 8pm5.21nii 379 1 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  [wsb 2068  wcel 2108  Vcvv 3422  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712
This theorem is referenced by:  sbcabel  3807  csbuni  4867  csbxp  5676  csbdm  5795  sbcfung  6442  csbfrecsg  8071  bnj89  32600  bnj985v  32833  bnj985  32834  csboprabg  35428  sbcexf  36200  onfrALTlem5  42051  onfrALTlem5VD  42394  csbxpgVD  42403  csbrngVD  42405  csbunigVD  42407
  Copyright terms: Public domain W3C validator