![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcex2 | Structured version Visualization version GIF version |
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.) |
Ref | Expression |
---|---|
sbcex2 | ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3801 | . 2 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 → 𝐴 ∈ V) | |
2 | sbcex 3801 | . . 3 ⊢ ([𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) | |
3 | 2 | exlimiv 1928 | . 2 ⊢ (∃𝑥[𝐴 / 𝑦]𝜑 → 𝐴 ∈ V) |
4 | dfsbcq2 3794 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝐴 / 𝑦]∃𝑥𝜑)) | |
5 | dfsbcq2 3794 | . . . 4 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
6 | 5 | exbidv 1919 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
7 | sbex 2280 | . . 3 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
8 | 4, 6, 7 | vtoclbg 3557 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
9 | 1, 3, 8 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1776 [wsb 2062 ∈ wcel 2106 Vcvv 3478 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-sbc 3792 |
This theorem is referenced by: sbcabel 3887 csbuni 4941 csbxp 5788 csbdm 5911 sbcfung 6592 csbfrecsg 8308 bnj89 34714 bnj985v 34946 bnj985 34947 csboprabg 37313 sbcexf 38102 onfrALTlem5 44540 onfrALTlem5VD 44883 csbxpgVD 44892 csbrngVD 44894 csbunigVD 44896 |
Copyright terms: Public domain | W3C validator |