MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcex2 Structured version   Visualization version   GIF version

Theorem sbcex2 3850
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) (Revised by NM, 18-Aug-2018.)
Assertion
Ref Expression
sbcex2 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem sbcex2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3798 . 2 ([𝐴 / 𝑦]𝑥𝜑𝐴 ∈ V)
2 sbcex 3798 . . 3 ([𝐴 / 𝑦]𝜑𝐴 ∈ V)
32exlimiv 1930 . 2 (∃𝑥[𝐴 / 𝑦]𝜑𝐴 ∈ V)
4 dfsbcq2 3791 . . 3 (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑[𝐴 / 𝑦]𝑥𝜑))
5 dfsbcq2 3791 . . . 4 (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑[𝐴 / 𝑦]𝜑))
65exbidv 1921 . . 3 (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
7 sbex 2281 . . 3 ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
84, 6, 7vtoclbg 3557 . 2 (𝐴 ∈ V → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
91, 3, 8pm5.21nii 378 1 ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  [wsb 2064  wcel 2108  Vcvv 3480  [wsbc 3788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-sbc 3789
This theorem is referenced by:  sbcabel  3878  csbuni  4936  csbxp  5785  csbdm  5908  sbcfung  6590  csbfrecsg  8309  bnj89  34735  bnj985v  34967  bnj985  34968  csboprabg  37331  sbcexf  38122  onfrALTlem5  44562  onfrALTlem5VD  44905  csbxpgVD  44914  csbrngVD  44916  csbunigVD  44918
  Copyright terms: Public domain W3C validator