MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbeqalb Structured version   Visualization version   GIF version

Theorem sbeqalb 3844
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
sbeqalb (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbeqalb
StepHypRef Expression
1 bibi1 350 . . . . 5 ((𝜑𝑥 = 𝐴) → ((𝜑𝑥 = 𝐵) ↔ (𝑥 = 𝐴𝑥 = 𝐵)))
21biimpa 475 . . . 4 (((𝜑𝑥 = 𝐴) ∧ (𝜑𝑥 = 𝐵)) → (𝑥 = 𝐴𝑥 = 𝐵))
32biimpd 228 . . 3 (((𝜑𝑥 = 𝐴) ∧ (𝜑𝑥 = 𝐵)) → (𝑥 = 𝐴𝑥 = 𝐵))
43alanimi 1811 . 2 ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → ∀𝑥(𝑥 = 𝐴𝑥 = 𝐵))
5 sbceqal 3842 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥 = 𝐵) → 𝐴 = 𝐵))
64, 5syl5 34 1 (𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ ∀𝑥(𝜑𝑥 = 𝐵)) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wcel 2099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464
This theorem is referenced by:  iotavalOLD  6528
  Copyright terms: Public domain W3C validator