MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcgOLD Structured version   Visualization version   GIF version

Theorem sbcgOLD 3800
Description: Obsolete version of sbcg 3799 as of 12-Oct-2024. (Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcgOLD (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcgOLD
StepHypRef Expression
1 nfv 1920 . 2 𝑥𝜑
21sbcgf 3797 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2109  [wsbc 3719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-sbc 3720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator