MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcgOLD Structured version   Visualization version   GIF version

Theorem sbcgOLD 3852
Description: Obsolete version of sbcg 3851 as of 12-Oct-2024. (Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbcgOLD (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem sbcgOLD
StepHypRef Expression
1 nfv 1909 . 2 𝑥𝜑
21sbcgf 3849 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  [wsbc 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-sbc 3773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator