Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcgfi | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
Ref | Expression |
---|---|
sbcgfi.1 | ⊢ 𝐴 ∈ V |
sbcgfi.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbcgfi | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcgfi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcgfi.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbcgf 3797 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1789 ∈ wcel 2109 Vcvv 3430 [wsbc 3719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-sbc 3720 |
This theorem is referenced by: csbgfi 3857 bnj110 32817 bnj1039 32930 mptsnunlem 35488 sbali 36249 sbexi 36250 |
Copyright terms: Public domain | W3C validator |