MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcgfi Structured version   Visualization version   GIF version

Theorem sbcgfi 3810
Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.)
Hypotheses
Ref Expression
sbcgfi.1 𝐴 ∈ V
sbcgfi.2 𝑥𝜑
Assertion
Ref Expression
sbcgfi ([𝐴 / 𝑥]𝜑𝜑)

Proof of Theorem sbcgfi
StepHypRef Expression
1 sbcgfi.1 . 2 𝐴 ∈ V
2 sbcgfi.2 . . 3 𝑥𝜑
32sbcgf 3807 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑𝜑))
41, 3ax-mp 5 1 ([𝐴 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wnf 1784  wcel 2111  Vcvv 3436  [wsbc 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-sbc 3737
This theorem is referenced by:  csbgfi  3865  bnj110  34870  bnj1039  34983  mptsnunlem  37382  sbali  38162  sbexi  38163
  Copyright terms: Public domain W3C validator