![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcgfi | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
Ref | Expression |
---|---|
sbcgfi.1 | ⊢ 𝐴 ∈ V |
sbcgfi.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbcgfi | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcgfi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcgfi.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbcgf 3850 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1777 ∈ wcel 2098 Vcvv 3461 [wsbc 3773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-sbc 3774 |
This theorem is referenced by: csbgfi 3910 bnj110 34617 bnj1039 34730 mptsnunlem 36945 sbali 37713 sbexi 37714 |
Copyright terms: Public domain | W3C validator |