![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcgfi | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
Ref | Expression |
---|---|
sbcgfi.1 | ⊢ 𝐴 ∈ V |
sbcgfi.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbcgfi | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcgfi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbcgfi.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbcgf 3881 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: csbgfi 3942 bnj110 34834 bnj1039 34947 mptsnunlem 37304 sbali 38072 sbexi 38073 |
Copyright terms: Public domain | W3C validator |