![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcgf | Structured version Visualization version GIF version |
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
sbcgf.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbcgf | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcgf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | sbctt 3846 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) | |
3 | 1, 2 | mpan2 688 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1777 ∈ wcel 2098 [wsbc 3770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-sbc 3771 |
This theorem is referenced by: sbc19.21g 3848 sbcgOLD 3850 sbcgfi 3851 sbcabel 3865 2nreu 4434 |
Copyright terms: Public domain | W3C validator |