MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcgf Structured version   Visualization version   GIF version

Theorem sbcgf 3754
Description: Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
sbcgf.1 𝑥𝜑
Assertion
Ref Expression
sbcgf (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))

Proof of Theorem sbcgf
StepHypRef Expression
1 sbcgf.1 . 2 𝑥𝜑
2 sbctt 3753 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜑) → ([𝐴 / 𝑥]𝜑𝜑))
31, 2mpan2 691 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wnf 1790  wcel 2113  [wsbc 3682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-12 2178  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-sbc 3683
This theorem is referenced by:  sbc19.21g  3755  sbcg  3756  sbcgfi  3757  sbcabel  3770  2nreu  4332
  Copyright terms: Public domain W3C validator