MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco3 Structured version   Visualization version   GIF version

Theorem sbco3 2564
Description: A composition law for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 18-Sep-2018.)
Assertion
Ref Expression
sbco3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)

Proof of Theorem sbco3
StepHypRef Expression
1 drsb1 2524 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑))
2 nfae 2468 . . . 4 𝑥𝑥 𝑥 = 𝑦
3 sbequ12a 2269 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
43sps 2209 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
52, 4sbbid 2550 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑))
61, 5bitr3d 270 . 2 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑))
7 sbco 2559 . . . 4 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)
87sbbii 2056 . . 3 ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
9 nfnae 2470 . . . 4 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
10 nfnae 2470 . . . 4 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
11 nfsb2 2507 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
129, 10, 11sbco2d 2563 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑))
138, 12syl5rbbr 275 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑))
146, 13pm2.61i 176 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1629  [wsb 2049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050
This theorem is referenced by:  sbcom  2565
  Copyright terms: Public domain W3C validator