MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco3 Structured version   Visualization version   GIF version

Theorem sbco3 2521
Description: A composition law for substitution. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 18-Sep-2018.) (New usage is discouraged.)
Assertion
Ref Expression
sbco3 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)

Proof of Theorem sbco3
StepHypRef Expression
1 drsb1 2503 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑))
2 nfae 2441 . . . 4 𝑥𝑥 𝑥 = 𝑦
3 sbequ12a 2255 . . . . 5 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
43sps 2186 . . . 4 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑))
52, 4sbbid 2247 . . 3 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑))
61, 5bitr3d 281 . 2 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑))
7 nfnae 2442 . . . 4 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
8 nfnae 2442 . . . 4 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
9 nfsb2 2491 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑)
107, 8, 9sbco2d 2520 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑))
11 sbco 2515 . . . 4 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑥 / 𝑦]𝜑)
1211sbbii 2076 . . 3 ([𝑧 / 𝑥][𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
1310, 12bitr3di 286 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑))
146, 13pm2.61i 182 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065
This theorem is referenced by:  sbcom  2522
  Copyright terms: Public domain W3C validator