![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbco4OLD | Structured version Visualization version GIF version |
Description: Obsolete version of sbco4 2102 as of 3-Sep-2025. (Contributed by Jim Kingdon, 25-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbco4OLD | ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcom2 2174 | . . 3 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑) | |
2 | sbco2vv 2099 | . . . 4 ⊢ ([𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | |
3 | 2 | sbbii 2076 | . . 3 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑢][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
4 | 1, 3 | bitr3i 277 | . 2 ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
5 | sbco4lem 2101 | . 2 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑) | |
6 | sbco4lem 2101 | . 2 ⊢ ([𝑥 / 𝑡][𝑦 / 𝑥][𝑡 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | |
7 | 4, 5, 6 | 3bitri 297 | 1 ⊢ ([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-11 2158 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |