| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcor | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.) |
| Ref | Expression |
|---|---|
| sbcor | ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex 3766 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) → 𝐴 ∈ V) | |
| 2 | sbcex 3766 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
| 3 | sbcex 3766 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 → 𝐴 ∈ V) | |
| 4 | 2, 3 | jaoi 857 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) → 𝐴 ∈ V) |
| 5 | dfsbcq2 3759 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓))) | |
| 6 | dfsbcq2 3759 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 7 | dfsbcq2 3759 | . . . 4 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜓)) | |
| 8 | 6, 7 | orbi12d 918 | . . 3 ⊢ (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
| 9 | sbor 2306 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | |
| 10 | 5, 8, 9 | vtoclbg 3526 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))) |
| 11 | 1, 4, 10 | pm5.21nii 378 | 1 ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 [wsb 2065 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sbc 3757 |
| This theorem is referenced by: sbcori 38110 sbc3or 44529 sbc3orgVD 44847 sbcoreleleqVD 44855 |
| Copyright terms: Public domain | W3C validator |