MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcor Structured version   Visualization version   GIF version

Theorem sbcor 3732
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcor ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcor
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3691 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcex 3691 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 sbcex 3691 . . 3 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
42, 3jaoi 856 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → 𝐴 ∈ V)
5 dfsbcq2 3684 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
6 dfsbcq2 3684 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
7 dfsbcq2 3684 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
86, 7orbi12d 918 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
9 sbor 2312 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
105, 8, 9vtoclbg 3473 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
111, 4, 10pm5.21nii 383 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wo 846   = wceq 1542  [wsb 2074  wcel 2114  Vcvv 3399  [wsbc 3681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3401  df-sbc 3682
This theorem is referenced by:  sbcori  35913  sbc3or  41713  sbc3orgVD  42032  sbcoreleleqVD  42040
  Copyright terms: Public domain W3C validator