MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcor Structured version   Visualization version   GIF version

Theorem sbcor 3822
Description: Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.) (Revised by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcor ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))

Proof of Theorem sbcor
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3779 . 2 ([𝐴 / 𝑥](𝜑𝜓) → 𝐴 ∈ V)
2 sbcex 3779 . . 3 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
3 sbcex 3779 . . 3 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
42, 3jaoi 854 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) → 𝐴 ∈ V)
5 dfsbcq2 3772 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝐴 / 𝑥](𝜑𝜓)))
6 dfsbcq2 3772 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
7 dfsbcq2 3772 . . . 4 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜓[𝐴 / 𝑥]𝜓))
86, 7orbi12d 915 . . 3 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
9 sbor 2295 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓))
105, 8, 9vtoclbg 3537 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
111, 4, 10pm5.21nii 378 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844   = wceq 1533  [wsb 2059  wcel 2098  Vcvv 3466  [wsbc 3769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-sbc 3770
This theorem is referenced by:  sbcori  37467  sbc3or  43782  sbc3orgVD  44101  sbcoreleleqVD  44109
  Copyright terms: Public domain W3C validator