| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcimi | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
| Ref | Expression |
|---|---|
| sbcimi.1 | ⊢ 𝐴 ∈ V |
| sbcimi.2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) |
| sbcimi.3 | ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) |
| Ref | Expression |
|---|---|
| sbcimi | ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜒 → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcimi.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | sbcimg 3810 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓)) |
| 4 | sbcimi.2 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) | |
| 5 | sbcimi.3 | . . 3 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) | |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ (([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) ↔ (𝜒 → 𝜂)) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜒 → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3455 [wsbc 3761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3762 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |