Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcimi Structured version   Visualization version   GIF version

Theorem sbcimi 36174
Description: Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypotheses
Ref Expression
sbcimi.1 𝐴 ∈ V
sbcimi.2 ([𝐴 / 𝑥]𝜑𝜒)
sbcimi.3 ([𝐴 / 𝑥]𝜓𝜂)
Assertion
Ref Expression
sbcimi ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))

Proof of Theorem sbcimi
StepHypRef Expression
1 sbcimi.1 . . 3 𝐴 ∈ V
2 sbcimg 3763 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
31, 2ax-mp 5 . 2 ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
4 sbcimi.2 . . 3 ([𝐴 / 𝑥]𝜑𝜒)
5 sbcimi.3 . . 3 ([𝐴 / 𝑥]𝜓𝜂)
64, 5imbi12i 354 . 2 (([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓) ↔ (𝜒𝜂))
73, 6bitri 278 1 ([𝐴 / 𝑥](𝜑𝜓) ↔ (𝜒𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2112  Vcvv 3423  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-sbc 3713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator