MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ8 Structured version   Visualization version   GIF version

Theorem sbequ8 2505
Description: Elimination of equality from antecedent after substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 5-Aug-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 28-Jul-2018.) Revise df-sb 2068. (Revised by Wolf Lammen, 28-Jul-2023.) (New usage is discouraged.)
Assertion
Ref Expression
sbequ8 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦𝜑))

Proof of Theorem sbequ8
StepHypRef Expression
1 equsb1 2495 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
21a1bi 363 . 2 ([𝑦 / 𝑥]𝜑 ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
3 sbim 2300 . 2 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
42, 3bitr4i 277 1 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator