MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsb1 Structured version   Visualization version   GIF version

Theorem equsb1 2493
Description: Substitution applied to an atomic wff. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker equsb1v 2101 if possible. (Contributed by NM, 10-May-1993.) (New usage is discouraged.)
Assertion
Ref Expression
equsb1 [𝑦 / 𝑥]𝑥 = 𝑦

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 2478 . 2 (∀𝑥(𝑥 = 𝑦𝑥 = 𝑦) → [𝑦 / 𝑥]𝑥 = 𝑦)
2 id 22 . 2 (𝑥 = 𝑦𝑥 = 𝑦)
31, 2mpg 1797 1 [𝑦 / 𝑥]𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-12 2169  ax-13 2370
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-nf 1784  df-sb 2066
This theorem is referenced by:  sbequ8  2503  sbie  2504  frege54cor1b  41724  sb5ALT  42367  sb5ALTVD  42755
  Copyright terms: Public domain W3C validator