MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb4 Structured version   Visualization version   GIF version

Theorem nfsb4 2540
Description: A variable not free in a proposition remains so after substitution in that proposition with a distinct variable. Usage of this theorem is discouraged because it depends on ax-13 2390. Theorem nfsb 2565 replaces the distinctor with a disjoint variable condition. Visit also nfsbv 2349 for a weaker version of nfsb 2565 not requiring ax-13 2390. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfsb4.1 𝑧𝜑
Assertion
Ref Expression
nfsb4 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)

Proof of Theorem nfsb4
StepHypRef Expression
1 nfsb4t 2539 . 2 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
2 nfsb4.1 . 2 𝑧𝜑
31, 2mpg 1798 1 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wnf 1784  [wsb 2069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-11 2161  ax-12 2177  ax-13 2390
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070
This theorem is referenced by:  sbco2  2553  nfsbOLD  2566
  Copyright terms: Public domain W3C validator