MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsb4 Structured version   Visualization version   GIF version

Theorem nfsb4 2504
Description: A variable not free in a proposition remains so after substitution in that proposition with a distinct variable (inference associated with nfsb4t 2503). Theorem nfsb 2527 replaces the distinctor antecedent with a disjoint variable condition. See nfsbv 2328 for a weaker version of nfsb 2527 not requiring ax-13 2372. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use nfsbv 2328 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
nfsb4.1 𝑧𝜑
Assertion
Ref Expression
nfsb4 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)

Proof of Theorem nfsb4
StepHypRef Expression
1 nfsb4t 2503 . 2 (∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
2 nfsb4.1 . 2 𝑧𝜑
31, 2mpg 1801 1 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537  wnf 1787  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by:  sbco2  2515  nfsbOLD  2528
  Copyright terms: Public domain W3C validator