![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbexi | Structured version Visualization version GIF version |
Description: Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sbexi | ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfe1 2201 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
3 | 2 | sbcgf 3726 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∃wex 1878 ∈ wcel 2164 Vcvv 3414 [wsbc 3662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-v 3416 df-sbc 3663 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |