Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbexi Structured version   Visualization version   GIF version

Theorem sbexi 36177
Description: Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypothesis
Ref Expression
sbexi.1 𝐴 ∈ V
Assertion
Ref Expression
sbexi ([𝐴 / 𝑥]𝑥𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem sbexi
StepHypRef Expression
1 sbexi.1 . 2 𝐴 ∈ V
2 nfe1 2153 . 2 𝑥𝑥𝜑
31, 2sbcgfi 3794 1 ([𝐴 / 𝑥]𝑥𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wex 1787  wcel 2112  Vcvv 3423  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2177  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-sbc 3713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator