| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbexi | Structured version Visualization version GIF version | ||
| Description: Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
| Ref | Expression |
|---|---|
| sbexi.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sbexi | ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbexi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | nfe1 2153 | . 2 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 3 | 1, 2 | sbcgfi 3815 | 1 ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 [wsbc 3741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |