Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbexi | Structured version Visualization version GIF version |
Description: Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbexi.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sbexi | ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbexi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
3 | 1, 2 | sbcgfi 3802 | 1 ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1786 ∈ wcel 2110 Vcvv 3431 [wsbc 3720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-sbc 3721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |