![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbali | Structured version Visualization version GIF version |
Description: Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbali.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sbali | ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbali.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | nfa1 2146 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
3 | 1, 2 | sbcgfi 3859 | 1 ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 ∈ wcel 2104 Vcvv 3472 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-sbc 3779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |