Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbali Structured version   Visualization version   GIF version

Theorem sbali 38099
Description: Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypothesis
Ref Expression
sbali.1 𝐴 ∈ V
Assertion
Ref Expression
sbali ([𝐴 / 𝑥]𝑥𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem sbali
StepHypRef Expression
1 sbali.1 . 2 𝐴 ∈ V
2 nfa1 2149 . 2 𝑥𝑥𝜑
31, 2sbcgfi 3872 1 ([𝐴 / 𝑥]𝑥𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1535  wcel 2106  Vcvv 3478  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-sbc 3792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator