Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbali Structured version   Visualization version   GIF version

Theorem sbali 37713
Description: Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypothesis
Ref Expression
sbali.1 𝐴 ∈ V
Assertion
Ref Expression
sbali ([𝐴 / 𝑥]𝑥𝜑 ↔ ∀𝑥𝜑)

Proof of Theorem sbali
StepHypRef Expression
1 sbali.1 . 2 𝐴 ∈ V
2 nfa1 2140 . 2 𝑥𝑥𝜑
31, 2sbcgfi 3854 1 ([𝐴 / 𝑥]𝑥𝜑 ↔ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1531  wcel 2098  Vcvv 3461  [wsbc 3773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-sbc 3774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator