![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcalf | Structured version Visualization version GIF version |
Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
Ref | Expression |
---|---|
sbcalf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
sbcalf | ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8v 2344 | . . 3 ⊢ (∀𝑦𝜑 ↔ ∀𝑧[𝑧 / 𝑦]𝜑) | |
2 | 1 | sbcbii 3835 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ [𝐴 / 𝑥]∀𝑧[𝑧 / 𝑦]𝜑) |
3 | sbcal 3838 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑧[𝑧 / 𝑦]𝜑 ↔ ∀𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
4 | sbcalf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
5 | nfs1v 2146 | . . . 4 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
6 | 4, 5 | nfsbcw 3797 | . . 3 ⊢ Ⅎ𝑦[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 |
7 | nfv 1910 | . . 3 ⊢ Ⅎ𝑧[𝐴 / 𝑥]𝜑 | |
8 | sbequ12r 2240 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑 ↔ 𝜑)) | |
9 | 8 | sbcbidv 3834 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
10 | 6, 7, 9 | cbvalv1 2333 | . 2 ⊢ (∀𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
11 | 2, 3, 10 | 3bitri 297 | 1 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 [wsb 2060 Ⅎwnfc 2879 [wsbc 3775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-v 3472 df-sbc 3776 |
This theorem is referenced by: sbcalfi 37583 |
Copyright terms: Public domain | W3C validator |