Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcalf Structured version   Visualization version   GIF version

Theorem sbcalf 37287
Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.)
Hypothesis
Ref Expression
sbcalf.1 𝑦𝐴
Assertion
Ref Expression
sbcalf ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem sbcalf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sb8v 2346 . . 3 (∀𝑦𝜑 ↔ ∀𝑧[𝑧 / 𝑦]𝜑)
21sbcbii 3838 . 2 ([𝐴 / 𝑥]𝑦𝜑[𝐴 / 𝑥]𝑧[𝑧 / 𝑦]𝜑)
3 sbcal 3842 . 2 ([𝐴 / 𝑥]𝑧[𝑧 / 𝑦]𝜑 ↔ ∀𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
4 sbcalf.1 . . . 4 𝑦𝐴
5 nfs1v 2151 . . . 4 𝑦[𝑧 / 𝑦]𝜑
64, 5nfsbcw 3800 . . 3 𝑦[𝐴 / 𝑥][𝑧 / 𝑦]𝜑
7 nfv 1915 . . 3 𝑧[𝐴 / 𝑥]𝜑
8 sbequ12r 2242 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑𝜑))
98sbcbidv 3837 . . 3 (𝑧 = 𝑦 → ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥]𝜑))
106, 7, 9cbvalv1 2335 . 2 (∀𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
112, 3, 103bitri 296 1 ([𝐴 / 𝑥]𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  [wsb 2065  wnfc 2881  [wsbc 3778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-v 3474  df-sbc 3779
This theorem is referenced by:  sbcalfi  37289
  Copyright terms: Public domain W3C validator