![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcalf | Structured version Visualization version GIF version |
Description: Move universal quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
Ref | Expression |
---|---|
sbcalf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
sbcalf | ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 2010 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
2 | 1 | sb8 2542 | . . 3 ⊢ (∀𝑦𝜑 ↔ ∀𝑧[𝑧 / 𝑦]𝜑) |
3 | 2 | sbcbii 3689 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ [𝐴 / 𝑥]∀𝑧[𝑧 / 𝑦]𝜑) |
4 | sbcal 3683 | . 2 ⊢ ([𝐴 / 𝑥]∀𝑧[𝑧 / 𝑦]𝜑 ↔ ∀𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑) | |
5 | sbcalf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
6 | nfs1v 2303 | . . . 4 ⊢ Ⅎ𝑦[𝑧 / 𝑦]𝜑 | |
7 | 5, 6 | nfsbc 3655 | . . 3 ⊢ Ⅎ𝑦[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 |
8 | nfv 2010 | . . 3 ⊢ Ⅎ𝑧[𝐴 / 𝑥]𝜑 | |
9 | sbequ12r 2279 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑦]𝜑 ↔ 𝜑)) | |
10 | 9 | sbcbidv 3688 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
11 | 7, 8, 10 | cbvalv1 2357 | . 2 ⊢ (∀𝑧[𝐴 / 𝑥][𝑧 / 𝑦]𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
12 | 3, 4, 11 | 3bitri 289 | 1 ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1651 [wsb 2064 Ⅎwnfc 2928 [wsbc 3633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-sbc 3634 |
This theorem is referenced by: sbcalfi 34406 |
Copyright terms: Public domain | W3C validator |