MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco2 Structured version   Visualization version   GIF version

Theorem sbco2 2515
Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v 2327 and sbco2vv 2100. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbco2.1 𝑧𝜑
Assertion
Ref Expression
sbco2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco2
StepHypRef Expression
1 sbequ12 2244 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑))
2 sbequ 2086 . . . 4 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
31, 2bitr3d 280 . . 3 (𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
43sps 2178 . 2 (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
5 nfnae 2434 . . 3 𝑧 ¬ ∀𝑧 𝑧 = 𝑦
6 sbco2.1 . . . 4 𝑧𝜑
76nfsb4 2504 . . 3 (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
82a1i 11 . . 3 (¬ ∀𝑧 𝑧 = 𝑦 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)))
95, 7, 8sbied 2507 . 2 (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
104, 9pm2.61i 182 1 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  sbco2d  2516  sb7f  2530  cbvab  2814  clelsb2OLD  2868  clelsb1f  2912  sbcco  3742
  Copyright terms: Public domain W3C validator