| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbco2 | Structured version Visualization version GIF version | ||
| Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v 2331 and sbco2vv 2099. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2251 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)) | |
| 2 | sbequ 2083 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3d 281 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 4 | 3 | sps 2185 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 5 | nfnae 2438 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
| 6 | sbco2.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 7 | 6 | nfsb4 2504 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 8 | 2 | a1i 11 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
| 9 | 5, 7, 8 | sbied 2507 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sbco2d 2516 sb7f 2529 cbvab 2807 clelsb2OLD 2863 clelsb1f 2903 sbcco 3791 |
| Copyright terms: Public domain | W3C validator |