![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbco2 | Structured version Visualization version GIF version |
Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v 2336 and sbco2vv 2099. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2252 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)) | |
2 | sbequ 2083 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3d 281 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
4 | 3 | sps 2186 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
5 | nfnae 2442 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
6 | sbco2.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
7 | 6 | nfsb4 2508 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
8 | 2 | a1i 11 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
9 | 5, 7, 8 | sbied 2511 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
10 | 4, 9 | pm2.61i 182 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sbco2d 2520 sb7f 2533 cbvab 2817 clelsb2OLD 2873 clelsb1f 2913 sbcco 3830 |
Copyright terms: Public domain | W3C validator |