| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbco2 | Structured version Visualization version GIF version | ||
| Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v 2330 and sbco2vv 2100. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ12 2252 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)) | |
| 2 | sbequ 2084 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | bitr3d 281 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 4 | 3 | sps 2186 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 5 | nfnae 2432 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
| 6 | sbco2.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 7 | 6 | nfsb4 2498 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| 8 | 2 | a1i 11 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
| 9 | 5, 7, 8 | sbied 2501 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 10 | 4, 9 | pm2.61i 182 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sbco2d 2510 sb7f 2523 cbvab 2801 clelsb1f 2896 sbcco 3779 |
| Copyright terms: Public domain | W3C validator |