![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbco2 | Structured version Visualization version GIF version |
Description: A composition law for substitution. For versions requiring fewer axioms, but more disjoint variable conditions, see sbco2v 2307 and sbco2vv 2290. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.) |
Ref | Expression |
---|---|
sbco2.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sbco2 | ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbequ12 2229 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧][𝑧 / 𝑥]𝜑)) | |
2 | sbequ 2452 | . . . 4 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | bitr3d 273 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
4 | 3 | sps 2169 | . 2 ⊢ (∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
5 | nfnae 2400 | . . 3 ⊢ Ⅎ𝑧 ¬ ∀𝑧 𝑧 = 𝑦 | |
6 | sbco2.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
7 | 6 | nfsb4 2466 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
8 | 2 | a1i 11 | . . 3 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))) |
9 | 5, 7, 8 | sbied 2485 | . 2 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
10 | 4, 9 | pm2.61i 177 | 1 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∀wal 1599 Ⅎwnf 1827 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 |
This theorem is referenced by: sbco2d 2493 equsb3ALT 2511 elsb3OLD 2514 elsb4OLD 2517 sb7f 2533 sbco4lem 2545 sbco4 2546 eqsb3 2887 clelsb3 2888 cbvab 2913 clelsb3f 2938 clelsb3fOLD 2939 sbralie 3380 sbcco 3675 2reu8i 42164 |
Copyright terms: Public domain | W3C validator |